Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 11(18): 7843-7848, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32866015

RESUMO

Selective pumping and probing of highly excited states of molecules are essential in various studies but are also challenging because of high density of states, weak transition moments, and lack of precise spectroscopy data. We develop a comb-locked cavity-assisted double-resonance spectroscopy (COCA-DR) method for precision measurements using low-power continuous-wave lasers. A high-finesse cavity locked with an optical frequency comb is used to enhance both the pumping power and the probing sensitivity. As a demonstration, Doppler-free stepwise two-photon absorption spectra of CO2 were recorded by using two milliwatt diode lasers (1.60 and 1.67 µm), and the rotation energies in a highly excited state (CO-stretching quanta = 8) were determined with an unprecedented accuracy of a few kilohertz.

2.
Phys Chem Chem Phys ; 22(5): 2841-2848, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31967121

RESUMO

Quantitative determination of atmospheric CO2 concentration by remote sensing relies on accurate line parameters. Lamb dips of the lines up to J'' = 72 in the 30013-00001 band at 1605 nm were measured using a comb-locked cavity ring-down spectrometer, and the positions were determined with an accuracy of a few kHz. A simple effective Hamiltonian model can fit the rotational energies in the 30013 state ideally within the experimental accuracy, indicating that the vibrational state is well-isolated and can be regarded as free from perturbations. From a comparison between other bands using a similar analysis, we conclude that the transitions in the 30013-00001 band could be more suitable as reference lines for sensing applications with the potentially improved line parameter accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA