Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 19564, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174645

RESUMO

Constructing highways in deserts is expensive due to the difficulty of acquiring materials; utilizing aeolian sand effectively has become a problem, especially in the Xinjiang region, where the desert widely occurs. This paper aims to investigate the vibration response of a geocell-reinforced aeolian sand subgrade under traffic loading based on field tests of highways in deserts. The vibration acceleration response of geocell-reinforced aeolian sand and gravelly soil upper roadbed structures is tested. The field test results illustrate the effects of dynamic loading on geocell-reinforced aeolian sand roadbeds, and the thickness substitution ratio between geocell-reinforced aeolian sand roadbeds and conventional gravelly soil roadbeds is determined and verified based on the vibration acceleration monitoring values. The results show that the vibration response induced by the test vehicle is concentrated within the 30 Hz frequency band, and the higher the vibration frequency, the faster the vertical decay in the road. The vibration damping capacity of the reinforced aeolian sand roadbed is better than that of the gravelly soil roadbed; when replacing the gravelly soil roadbed with the reinforced aeolian sand roadbed, the substitution ratio is 0.31-0.42. It is verified that half thickness of gravel soil on roadbeds can be replaced by geocell-reinforced aeolian sand under different working conditions. The results of this study can provide reference data for the design of highway subgrades in deserts.

2.
Sci Rep ; 13(1): 8031, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198287

RESUMO

Shanghai is susceptible to land subsidence due to its unique geological environment and frequent human activities. Traditional leveling techniques are not sufficient for monitoring large areas of land subsidence due to the time-consuming, labor-intensive, and expensive nature of the process. Furthermore, the results of conventional methods may not be timely, rendering them ineffective for monitoring purposes. Interferometric Synthetic Aperture Radar (InSAR) technology is a widely used method for monitoring ground subsidence due to its low cost, high efficiency, and ability to cover large areas. To monitor the surface sink condition of Shanghai over the past 2 years, monitoring data were obtained through the technical processing of 24 images from Sentinel-1A data covering Shanghai from 2019 to 2020 using the Persistent Scatterer (PS-InSAR) and Small Baseline Subset (SBAS-InSAR) technique. The ground subsidence (GS) results were extracted via PS and SBAS interferometry processing, while Shuttle Radar Topography Mission data were used to correct the residual phase. According to PS and SBAS methods, the maximum ground subsidence in the study area reached 99.8 mm and 47.2 mm, respectively. The subsidence rate and the accumulated amount of subsidence derived from the monitoring results revealed the urban area in Shanghai to be principally characterized by uneven GS, with multiple settlement funnels being found to be distributed across the main urban area. Moreover, when compared with the historical subsidence data, geological data, and urban construction distribution data, the individual settlement funnels were observed to correspond to those data concerning the historical surface settlement funnel in Shanghai. By randomly selecting GS time-series data regarding three feature points, it was determined that the morphological variables of the GS remained largely consistent at all time points and that their change trends exhibited a high degree of consistency, which verified the reliability of the PS-InSAR and SBAS-InSAR monitoring method. The results can provide data support for decision making in terms of geological disaster prevention and control in Shanghai.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA