Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Med ; 30(1): 144, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256642

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a special kind of chronic interstitial lung disease with insidious onset. Previous studies have revealed that mutations in ZCCHC8 may lead to IPF. The aim of this study is to explore the ZCCHC8 mutations in Chinese IPF patients. METHODS: Here, we enrolled 124 patients with interstitial lung disease from 2017 to 2023 in our hospital. Whole exome sequencing and Sanger sequencing were employed to explore the genetic lesions of these patients. RESULTS: Among these 124 patients, a novel mutation (NM_017612: c.1228 C > G/p.P410A) of Zinc Finger CCHC-Type Containing 8 (ZCCHC8)was identified in a family with IPF and chronic obstructive lung disease. As a component of the nuclear exosome-targeting complex that regulates the turnover of human telomerase RNA, ZCCHC8 mutations have been reported may lead to IPF in European population and American population. Functional study confirmed that the novel mutation can disrupt the nucleocytoplasmic localization of ZCCHC8, which further decreased the expression of DKC1 and RTEL1, and finally reduced the length of telomere and led to IPF and related disorders. CONCLUSIONS: We may first report the ZCCHC8 mutation in Asian population with IPF. Our study broadens the mutation, phenotype, and population spectrum of ZCCHC8 deficiency.


Assuntos
Fibrose Pulmonar Idiopática , Mutação , Doença Pulmonar Obstrutiva Crônica , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Masculino , Feminino , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pessoa de Meia-Idade , Idoso , Predisposição Genética para Doença , Sequenciamento do Exoma , Linhagem , Núcleo Celular/metabolismo
2.
Mol Biol Rep ; 51(1): 371, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411728

RESUMO

BACKGROUND: Cockayne syndrome is an inherited heterogeneous defect in transcription-coupled DNA repair (TCR) cause severe clinical syndromes, which may affect the nervous system development of infants and even lead to premature death in some cases. ERCC8 diverse critical roles in the nucleotide excision repair (NER) complex, which is one of the disease-causing genes of Cockayne syndrome. METHODS AND RESULTS: The mutation of ERCC8 in the patient was identified and validated using WES and Sanger sequencing. Specifically, a compound heterozygous mutation (c.454_460dupGTCTCCA p. T154Sfs*13 and c.755_759delGTTTT p.C252Yfs*3) of ERCC8 (CSA) was found, which could potentially be the genetic cause of Cockayne syndrome in the proband. CONCLUSION: In this study, we identified a novel heterozygous mutation of ERCC8 in a Chinese family with Cockayne syndrome, which enlarging the genetic spectrum of the disease.


Assuntos
Síndrome de Cockayne , Humanos , Povo Asiático , Núcleo Celular , Síndrome de Cockayne/genética , Enzimas Reparadoras do DNA/genética , Reparo por Excisão , Mutação/genética , Fatores de Transcrição
3.
Environ Pollut ; 331(Pt 2): 121891, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236585

RESUMO

A clear understanding of the allocation of Cd to grains is essential to manage the level of Cd in cereal diets effectively. Yet, debate remains over whether and how the pre-anthesis pools contribute to grain Cd accumulation, resulting in uncertainty regarding the need to control plant Cd uptake during vegetative growth. To this end, rice seedlings were exposed to 111Cd labeled solution until tillering, transplanted to unlabeled soils, and grown under open-air conditions. The remobilization of Cd derived from pre-anthesis vegetative pools was studied through the fluxes of 111Cd-enriched label among organs during grain filling. The 111Cd label was continuously allocated to the grain after anthesis. The lower leaves remobilized the Cd label during the earlier stage of grain development, which was allocated almost equally to the grains and husks + rachis. During the final stage, the Cd label was strongly remobilized from the roots and, less importantly, the internodes, which was strongly allocated to the nodes and, to a less extent, the grains. The results show that the pre-anthesis vegetative pools are an important source of Cd in rice grains. The lower leaves, internodes, and roots are the source organs, whereas the husks + rachis and nodes are the sinks competing with the grain for the remobilized Cd. This study provides insight into understanding the ecophysiological mechanism of Cd remobilization and setting agronomic measures for lowering grain Cd levels.


Assuntos
Oryza , Poluentes do Solo , Grão Comestível/química , Cádmio/análise , Marcação por Isótopo , Folhas de Planta/química , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA