Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Med ; 16(7-8): 322-32, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20386871

RESUMO

ST-segment elevation is the major clinical criterion for committing patients with chest pain to have emergent coronary revascularizations; however, the mechanism responsible for ST-segment elevation is unknown. In a guinea pig model of ST-segment elevation acute myocardial infarction (AMI), local application of hirudin, a thrombin antagonist, significantly decreased AMI-induced ST-segment elevation in a dose-dependent manner. Hirudin-induced (5 antithrombin units [ATU]) decrease in ST elevation was reversed by 250 nmol/L thrombin receptor activator peptide (TRAP). TRAP (250 nmol/L [100 microL]) significantly induced ST-segment elevation in hearts without AMI. The TRAP effect was blocked by 4 mg/kg glibenclamide and 4 mg/kg HMR1098 and partially blocked by 3 mg/kg 5HD. Pinacidil (0.45 mg/kg) simulated the effect of TRAP (250 nmol/L [100 microL]) on hearts without AMI. Moreover, single-channel recordings showed that TRAP induced ATP-sensitive K+ channel (KATP channel) activity, and this effect was blocked by HMR1098 but not 5HD. Finally, TRAP significantly shortened the monophasic action potential (MAP) at 90% repolarization (MAP90) and epicardial MAP (EpiMAP) duration. These effects of TRAP were completely reversed by HMR1098 and partially reversed by 5HD. Thrombin and its receptor activation enhanced ST-segment elevation in an AMI model by activating the sarcolemmal KATP channel.


Assuntos
Eletrocardiografia/efeitos dos fármacos , Canais KATP/metabolismo , Infarto do Miocárdio/metabolismo , Receptores de Trombina/metabolismo , Trombina/metabolismo , Análise de Variância , Animais , Eletrocardiografia/métodos , Cobaias , Hirudinas/farmacologia , Masculino , Perfusão , Trombina/antagonistas & inibidores
2.
Am J Physiol Heart Circ Physiol ; 290(1): H248-54, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16113071

RESUMO

Enhanced external counterpulsation (EECP) is an effective noninvasive treatment of coronary artery disease. Its mechanism of action remains unknown. An acute coronary occlusion dog model was created to explore the angiogenic effect of EECP. After coronary occlusion, 12 dogs were randomly assigned to either EECP (n = 6) or control (n = 6). Immunohistochemical studies of alpha-actin and von Willebrand factor (vWF) were used to detect newly developed microvessels. Systemic and local vascular endothelial growth factor (VEGF) were identified by ELISA and reverse transcriptase PCR analysis. There was a significant increase in the density of microvessels per squared millimeter in the infarcted regions of the EECP group compared with the control group (vWF, 15.2 +/- 6.3 vs. 4.9 +/- 2.1, P < 0.05; alpha-actin, 11.8 +/- 5.3 vs. 3.4 +/- 1.2, P < 0.05). The positive-stained area per squared micrometer also increased significantly (alpha-actin, 6.6 x 10(3) +/- 2.9 x 10(3) microm2 vs. 0.6 x 10(3) +/- 0.5 x 10(3) microm2, P < 0.05; vWF, 5.7 x 10(3) +/- 1.9 x 10(3) microm2 vs. 1.7 x 10(3) +/- 1.4 x 10(3) microm2, P < 0.05). Immunohistochemical staining and reverse transcriptase PCR analysis documented a significant increase in VEGF expression. These factors associated with angiogenesis corresponded to improved myocardial perfusion by 99mTc-sestamibi single-photon emission computed tomography. Angiogenesis may be a mechanism of action for the improved myocardial perfusion demonstrated after EECP therapy.


Assuntos
Contrapulsação , Infarto do Miocárdio/terapia , Neovascularização Fisiológica , Animais , Vasos Coronários/patologia , Modelos Animais de Doenças , Cães , Expressão Gênica , Hemodinâmica , Ligadura , Masculino , Miocárdio/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese
3.
Chin Med J (Engl) ; 118(14): 1182-9, 2005 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-16117863

RESUMO

BACKGROUND: Enhanced external counterpulsation (EECP) has been demonstrated to be effective in the treatment of patients with coronary artery disease (CAD). It has been proposed that the beneficial effects of EECP observed in clinical studies may be due to the formation of new blood vessels (angiogenesis) and collateral development. However, there is a relative paucity of basic studies to support the proposed mechanisms. METHODS: Twelve Beagle dogs were anesthetized with 3% sodium pentobarbital, 1 mg/kg intraperitoneal injection and mechanically ventilated for the development of myocardial infarction. After coronary occlusion, all animals were randomly assigned to either EECP or control. EECP was given one hour per day, 5 days a week, for a total of 28 to 30 hours treatment over a 6-week course. Immunohistochemical studies of alpha-actin and von Willebrand factor (vWF) were used to detect newly developed microvessels. Systemic and local vascular endothelial growth factor (VEGF) were identified by enzyme linked immunosorbent assay (ELISA) and reverse-transcriptional polymerase chain reaction (RT-PCR) analysis. RESULTS: There was a significant increase in the density of microvessels per mm(2) in the infarcted regions of EECP group compared to control group (vWF, 15.2 +/- 6.3 versus 4.9 +/- 2.1, P < 0.05; alpha-actin, 11.8 +/- 5.3 versus 3.4 +/- 1.2, P < 0.05), along with significant increase of positive vWF and alpha-actin stained area. Both immunohistochemical staining and RT-PCR analysis documented a significant increase in VEGF expression. These factors associated with angiogenesis corresponded to improved myocardial perfusion by 99mTc-sestamibi single-photon emission computed tomography. CONCLUSION: Microvessel angiogenesis may be a mechanism of action for the improved myocardial perfusion after EECP therapy.


Assuntos
Contrapulsação , Infarto do Miocárdio/terapia , Neovascularização Fisiológica , Animais , Cães , Hemodinâmica , Imuno-Histoquímica , Masculino , Microcirculação , Infarto do Miocárdio/fisiopatologia , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/genética , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA