Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 923: 171406, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432361

RESUMO

Global climate change has significantly impacted the production of various crops, particularly long-term fruit-bearing plants such as citrus. This study analyzed the fruit quality of 12 citrus orchards (Citrus Sinensis L.Osbeck cv. Bingtang) in a subtropical region in Yunnan, China from 2014 to 2022. The results indicated that high rainfall (>220 mm) and low cumulative temperature (<3150 °C) promoted increases in titratable acidity (>1.8 %) in young fruits. As the fruits further expanded (with a horizontal diameter increasing from 50 to 65 mm), excessive rainfall (300-400 mm), lower cumulative temperature (<2400 °C), and a reduced diurnal temperature range (<10 °C) hindered decreases in titratable acidity. Conversely, low rainfall (<220 mm), high cumulative temperature (>3150 °C), and a high diurnal temperature range (>14 °C) promoted the accumulation of soluble solids in young fruits (9 %) at 120 days after flowering (DAF). Furthermore, low rainfall (<100 mm) favored the accumulation of soluble solids (1.5 %) during fruit expansion (195-225DAF). To quantify the relationship between fruit acidity and climate variables at 120 DAF, we developed a regression model, which was further validated by actual measurements and accurately predicted fruit acidity in 2023. Our findings have the potential to assist citrus growers in optimizing cultivation techniques for the production of high-quality citrus under increasingly variable climatic conditions.


Assuntos
Citrus sinensis , Citrus , Mudança Climática , China , Temperatura Baixa , Frutas
2.
Plant Physiol Biochem ; 205: 108203, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000235

RESUMO

Molybdenum application holds the potential to enhance agricultural productivity. However, the precise impact on soil microbial diversity and mineral nutrient availability remains uncertain. In this study, we collected rhizosphere soil samples from different growth stages of broad beans. By analyzing mineral element contents, soil phosphorus and zinc fractions, as well as fungal and bacterial diversity, we observed that Mo application resulted in a reduction of soil Citrate‒P and HCl‒P content. This reduction led to an increase in available P content at different stages. Moreover, Mo application elevated root P concentration, but concurrently impeded the translocation of P to the shoots. Mo application also decreased the soil Exc‒Zn (exchangeable Zn) content while increasing the Res‒Zn (residual Zn) content, ultimately causing a decrease in available Zn content at different stages. Consequently, the Zn concentration within broad beans correspondingly decreased. Mo application fostered an augmentation in fungal richness and Shannon indices at the branching and podding stages. The analysis of microbial co-occurrence networks indicated that Mo application bolstered positive connectivity among fungal taxa. Remarkably, Mo significantly increased the abundance of Chaetomium, Leucosporidium, and Thielavia fungi. Spearman correlation analysis demonstrated a significant positive correlation between fungal diversity and soil available P content, as well as a notable negative correlation with soil available Zn content. These findings suggest that Mo application may modify the availability of soil P and Zn by influencing fungal diversity in the rhizosphere of crop soil, ultimately impacting nutrient accumulation within the grains.


Assuntos
Fabaceae , Vicia faba , Solo , Molibdênio/farmacologia , Rizosfera , Microbiologia do Solo , Minerais , Nutrientes
3.
Plant Physiol Biochem ; 204: 108082, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37852070

RESUMO

This study aims to further examine the effect of Magnesium (Mg) application on fruit quality and carotenoid metabolism in Satsuma mandarin pulp. For this, a field experiment was using 20-year-old Satsuma mandarin (C. unshiu Marc.) for two treatment; (1) CK treatment (without Mg), (2) Mg fertilizer treatment (200 g MgO plant-1). Compared with CK, Mg treatment substantially raised the Mg content in pulp at 90 to 150 DAF (the fruit expansion period), increasing by 15.69%-21.74%. Mg treatment also increased fruit TSS content by 15.84% and 9.88%, decreased fruit TA content in by 34.25% and 33.26% at 195 DAF and 210 DAF (the fruit ripening period). Moreover, at 120 to 195 DAF, Mg treatment significantly increased the levels of lutein, ß-cryptoxanthin, zeaxanthin and violaxanthin in the pulp. This can be explained by the increased expression of important biosynthetic genes, including CitPSY, CitPDS, CitLCYb1, CitLCYb2, CitLCYe, CitHYb, and CitZEP, that played a role in altering the carotenoid composition. The findings of this research offer a novel approach for augmenting both the economic and nutritional worth of citrus fruits.


Assuntos
Citrus , Frutas , Frutas/metabolismo , Magnésio/metabolismo , Carotenoides/metabolismo , Citrus/genética , Regulação da Expressão Gênica de Plantas
4.
Am J Transl Res ; 15(9): 5730-5746, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854219

RESUMO

OBJECTIVE: Acute kidney injury (AKI) is a global problem due to its high morbidity and mortality. The aim of this study was to identify the key RNAs involved in the ischemia/reperfusion (I/R) or cisplatin (CIS) induced AKI. METHODS: Gene Expression Omnibus database was used to download the microarray dataset GSE106993, GSE130814 and GSE98622. Differentially expressed lncRNAs (DE-lncRNAs) and DE-mRNAs were identified in I/R and CIS induced AKI. The target miRNAs of DE lncRNAs were predicted from miRDB, and the miRNA of lncRNA target mRNAs were predicted form StarBase dataset. The ceRNA regulatory networks, GO and KEGG enrichment analysis, and protein-protein interaction (PPI) of I/R and CIS induced AKI specific genes were constructed. The CIBESORT was applied to infer the proportion of 22 immune infiltration cells based on gene expression profiles of I/R and CIS induced AKI. RESULTS: Totally, 2 DE-lncRNAs and 375 DE-mRNAs were identified in I/R and CIS induced AKI. The common ceRNA network was constructed between CIS group and I/R induced AKI group, which contained 2 lncRNAs (Platr7 and Gm15611), 65 mmu-miRNAs and 167 mRNAs. The 167 common mRNAs were enriched in the biological process of transcription regulation, metabolic process, cell proliferation, the cellular component (CC) of extracellular region and space, the molecular function of DNA binding, and transcription regulator activity in CIS and IRI induced AKI. The common 167 mRNAs involved in the MAPK signaling pathway and JAK-STAT signaling pathway were identified. Protein-Protein Interaction (PPI) Network of ceRNAs network expressed gene was constructed, including 81 nodes, which contained 3 upregulated genes and 78 downregulated genes. Among them, mitochondrial apoptosis-related genes Pmaip1 and Nptx1 showed significantly high expression in the GSE98622 and GSE106993 data sets. The investigation to the connection between the gene expression profiles and immune cell infiltration showed considerable differences in immune cell percentage between AKI group and normal group. CONCLUSION: Novel lncRNAs and mRNAs were identified, which may serve as potential biomarkers to predict the diagnostic and therapeutic targets for AKI patients based on a large-scale sample. More importantly, the ceRNA network of I/R or CIS induced AKI was constructed, which provides valuable information to further explore the molecular mechanism underlying onset and progression of AKI.

5.
Bull Environ Contam Toxicol ; 111(3): 42, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37715785

RESUMO

Se (Selenium) has been reported to be an important protective agent to decreases Cd (Cadmium) induced toxic in plants. However, it remains unclear how Se mitigates the uptake of Cd and increased the resistance to Cd toxicity. Hydroponic experiments were arranged to investigate the changes of physiological properties, root cell membrane integrity and Cd-related transporter genes in rape seedlings. Comparison of the biomass between the addition of Se and the absence of Se under Cd exposure showed that the Cd-induced growth inhibition of rape seedlings was alleviated by Se. Cd decreased the photosynthetic rate (Pn), stomatal conductance (Gs) and photosynthetic pigment content including chlorophyll a, chlorophyll b and carotenoid. However, all these parameters were all significantly improved by Se addition. Moreover, exposure to Se resulted in a decrease in Cd concentration in both shoot and root, ranging from 4.28 to 27.2%. Notably, the application of Se at a concentration of 1 µmol L- 1 exhibited the best performance. Furthermore, Se enhanced cell membrane integrity and reduced superoxide anion levels, thereby contributing to the alleviation of cadmium toxicity in plants. More critically, Se decreased the expression levels of root Cd-related transporter genes BnIRT1, BnHMA2 and BnHMA4 under Cd stress, which are responsible for Cd transport and translocation. These results are important to increase crop growth and reduce Cd load in the food chain from metal toxicity management and agronomical point of view.


Assuntos
Brassica napus , Brassica rapa , Plântula , Brassica napus/genética , Cádmio/toxicidade , Clorofila A , Membrana Celular
6.
J Agric Food Chem ; 71(37): 13729-13744, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37682241

RESUMO

While molybdenum (Mo) application can improve phosphorus (P) availability to plants by changing P speciation in the rhizosphere, the mechanistic basis of this process remains unclear. This work investigated the impact of various combinations of Mo and P treatments on root morphology, P and Mo uptake, and root transcriptome and metabolome. Mo application significantly increased soybean biomass and the number of lateral roots at both low (5 µmol) or normal (500 µmol) P levels and significantly improved P concentration and accumulation in Normal P treatment. Compared with the Normal P treatment, Low P significantly increased the number of roots, root surface area, and root acid phosphatase secretion. A total of 6811 Mo-responsive differentially expressed genes and 135 differential metabolites were identified at two P levels. At Low P, transcriptional changes significantly increased root synthesis and secretion of succinic acid, methylmalonic acid, and other organic acids as well as acid phosphatase, thereby increasing the conversion of soil aluminum-bound P and organic P into available P. At Normal P, Mo application increased P uptake mainly by increasing the number of lateral roots. Thus, Mo helps crops adapt to different P levels by regulating root anatomy and transcriptional and metabolic profiles of their roots.


Assuntos
Glycine max , Molibdênio , Glycine max/genética , Transporte Biológico , Alumínio , Fósforo
7.
Environ Res ; 236(Pt 2): 116827, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544471

RESUMO

Soil salinization is a prevalent abiotic stress that adversely affects soybean production. Rhizosphere microorganisms have been shown to modulate the rhizosphere microenvironment of plants, leading to improved stress resistance. Selenium is known to optimize the rhizosphere microbial community, however, it remains uncertain whether selenium-induced rhizosphere microorganisms can enhance plant salt tolerance. In this study, we selected two soybean varieties, including salt-tolerant and salt-sensitive, and conducted pot experiments to explore the impact of selenium application on the structure and composition of the rhizosphere microbial community of soybean plants under salt stress. Four salt-tolerant bacteria from salt-tolerant soybean rhizosphere soil fertilized with selenium under salt stress were isolated, and their effects on improving salt tolerance in salt-sensitive soybean were also investigated. Our results showed that selenium application enhanced soybean salt tolerance by optimizing the structure of the plant rhizosphere microbial community and improving soil enzyme activities in both salt-tolerant and salt-sensitive varieties. Moreover, compared with salt-only treatment, inoculation of the four bacteria led to a significant increase in the plant height (7.2%-19.8%), aboveground fresh weight (57.3%-73.5%), SPAD value (8.4%-30.3%), and K+ content (4.5%-12.1%) of salt-sensitive soybean, while reducing the content of proline (84.5%-94%), MDA (26.5%-49.3%), and Na+ (7.1%-21.3%). High-throughput sequencing of the 16 S ribosomal RNA gene indicated that the four bacteria played a crucial role in changing the community structure of salt-sensitive soybean and mitigating the effects of salt stress. This study highlighted the importance of selenium combined with beneficial microorganisms in the plant rhizosphere in alleviating salinity stress.

8.
J Hazard Mater ; 457: 131713, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37301074

RESUMO

Microbial biotransformation of Cr(VI) is a sustainable approach to reduce Cr(VI) toxicity and remediate Cr(VI) contamination. In this study, Bacillus cereus SES with the capability of reducing both Cr(VI) and Se(IV) was isolated, and the effect of Se supplementation on Cr(VI) reduction by Bacillus cereus SES was investigated. Se(IV) addition enabled 2.6-fold faster Cr(VI) reduction, while B. cereus SES reduced 96.96% Se(IV) and produced more selenium nanoparticles (SeNPs) in the presence of Cr(VI). Co-reduction products of B. cereus SES on Cr(VI) and Se(IV) were SeNPs adsorbed with Cr(III). The relevant mechanisms were further revealed by proteomics. Se(IV) supplementation mediated the synthesis of Cr(VI) reductants and stress-resistant substances, thus enhancing Cr(VI) resistance and promoting Cr(VI) reduction. Meanwhile, high Se(IV) reduction rate was associated with Cr(VI)-induced electron transport processes, and Cr(VI) mediated the up-regulation of flagellar assembly, protein export and ABC transporters pathways to synthesis and export more SeNPs. Furthermore, Se combined with B. cereus SES had the potential to reduce the toxicity of Cr(VI) via reducing the bioavailability of Cr and improving the bioavailability of Se in soil. Results suggested that Se could be an efficient strategy to enhance the remediation of B. cereus SES on Cr contamination.


Assuntos
Nanopartículas , Selênio , Selênio/farmacologia , Selênio/metabolismo , Bacillus cereus/metabolismo , Oxirredução
9.
Sci Total Environ ; 894: 164868, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343850

RESUMO

The effect of phosphorus (P) speciation in biochar on soil available Cd and its mechanism to alleviate plant Cd stress remain largely unknown. Here, ammonium polyphosphate (PABC)-, phosphoric acid (PHBC)-, potassium dihydrogen phosphate (PKBC)-, and ammonium dihydrogen phosphate (PNBC)-modified biochar were used to investigate P speciation. The Cd immobilization mechanism of biochar was analyzed by XPS and 31P NMR, and the soil quality and the mechanism for the biochar to alleviate Cd stress were also determined. The results demonstrated that PBC (pristine biochar), PABC, PHBC, PKBC, and PNBC reduced the content of soil DTPA-Cd by 14.96 % - 32.19 %, 40.44 % - 47.26 %, 17.52 % - 41.78 %, and 21.90 % - 36.64 %, respectively. The XPS and 31P NMR results demonstrated that the orthophosphate on the surface of PABC, PHBC, PKBC, and PNBC accounted for 82.06 %, 62.77 %, 33.1 %, and 54.46 %, respectively, indicating that PABC has the highest passivation efficiency on soil Cd, which was ascribed to the highest orthophosphate content on the biochar surface. Pot experiments revealed that PABC could reduce the Cd content by 4.18, 4.41, 4.43, 2.94, and 2.57 folds in roots, stems, leaves, pods, and grains, respectively, and at the same time increase the dry and fresh weight of soybean and decrease Cd toxicity to soybean by improving the antioxidant system. In addition, application of the P-modified biochars improved the enzyme activity and physicochemical properties of the soil. This study provides a new perspective for studying the effect of P-modified biochars on soil Cd immobilization.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Fósforo , Solo/química , Poluentes do Solo/análise , Carvão Vegetal/química , Fosfatos
10.
Front Plant Sci ; 14: 1098042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223817

RESUMO

Citrus reticulata Blanco 'Orah' is grown throughout southern China and provides enormous economic value. However, the agricultural industry has suffered substantial losses during recent years due to marbled fruit disease. The present study focuses on the soil bacterial communities associated with marbled fruit in 'Orah'. The agronomic traits and microbiomes of plants with normal and marbled fruit from three different orchards were compared. No significant differences were found in agronomic traits between the groups, except for higher fruit yields and higher quality of fruits in normal fruit group. Additionally, a total of 2,106,050 16S rRNA gene sequences were generated via the NovoSeq 6000. The alpha diversity index (including the Shannon and Simpson indices), Bray-Curtis similarity, and principal component analyses indicated no significant differences in microbiome diversity between normal and marbled fruit groups. For the healthy 'Orah', the most abundant associated phyla were Bacteroidetes, Firmicutes, and Proteobacteria. In comparison, Burkholderiaceae and Acidobacteria were the most abundant taxa with the marbled fruit group. In addition, the family Xanthomonadaceae and the genus Candidatus Nitrosotalea were prevalent with this group. Analysis using the Kyoto Encyclopedia of Genes and Genomes pathways showed that several pathways related to metabolism significantly differed between the groups. Thus, the present study provides valuable information regarding soil bacterial communities associated with marbled fruit in 'Orah'.

11.
Int Urol Nephrol ; 55(10): 2507-2516, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36964321

RESUMO

OBJECTIVE: To mechanistically assess the involvement of tenascin-C (TNC) in diabetic nephropathy (DN). METHODS: Renal specimens from DN patients were histopathologically examined, and their TNC expression patterns were evaluated via immunohistochemistry. Additionally, the hereditarily diabetic C57BL/KsJ db/db mice were induced to develop DN via adaptive feeding, and then their renal levels of TNC and ß-catenin were assessed via western blotting and immunohistochemistry. Furthermore, the TNC and ß-catenin levels in primary rat mesangial cells (RMCs) cultured with high glucose levels were assessed via western blotting. In parallel, RMCs cultured with TNC in the presence or absence of the ß-catenin blocker ICG-001 were analyzed for their fibronectin and collagen I levels via immunostaining, and for their fibronectin, α-SMA, vimentin, PDGFR-ß, PCNA, and ß-catenin levels via western blotting. RESULTS: The TNC levels in the specimens were associated with the pathological classification. In these DN specimens, TNC protein was highly detected in the MCs and slightly in the tubulointerstitium. Renal TNC (P < 0.05) and ß-catenin (P < 0.001) were upregulated in db/db vs. db/m mice. High-glucose treatment upregulated TNC (P < 0.01) and ß-catenin (P < 0.05) in RMCs. TNC treatment upregulated fibronectin (P < 0.05), α-SMA (P < 0.01), vimentin (P < 0.05), PCNA (P < 0.05), and ß-catenin (P < 0.05) in RMCs, as assessed via western blotting. Immunohistochemical analysis confirmed the fibronectin upregulation and showed collagen I upregulation. Western-blot results also showed that levels of fibronectin (P < 0.001), α-SMA (P < 0.01), vimentin (P < 0.001), PCNA (P < 0.05), PDGFR-ß (P < 0.05), and ß-catenin (P < 0.01) were lower in RMCs co-treated with TNC and ICG-001 than in TNC-treated cells. Immunofluorescence analysis confirmed the decreased fibronectin level and showed that the collagen I level was also decreased by ICG-001. CONCLUSION: TNC is upregulated in DN and induces MC proliferation and fibrosis through the ß-catenin pathway.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ratos , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Células Mesangiais/metabolismo , Fibronectinas , Tenascina/metabolismo , Vimentina/metabolismo , beta Catenina , Antígeno Nuclear de Célula em Proliferação/metabolismo , Camundongos Endogâmicos C57BL , Glucose/farmacologia , Glucose/metabolismo , Fibrose , Proliferação de Células , Diabetes Mellitus/metabolismo
12.
Environ Pollut ; 323: 121272, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36780973

RESUMO

Heavy metal compound contaminated soil is an ecological threat, and soil containing copper (Cu), cadmium (Cd) and chromium (Cr) simultaneously is widely distributed. The application of phytoremediation in heavy metal combined contamination is still limited. In this study, to explore whether and how exogenous selenium (Se) and Bacillus proteolyticus SES enhance the remediation of combined Cu-Cd-Cr contaminated soil by ryegrass, pot experiments were carried out. Se alone or in combination with B. proteolyticus SES treatment increased the removal rates of heavy metals in the rhizosphere soil by 17.38%-157.25% relative to the control, while Se + B. proteolyticus SES treatment played a greater role in improving the heavy metals tolerance of ryegrass and increasing the activity of soil acid phosphatase. Moreover, Se and B. proteolyticus SES favored the preferential recruitment of specific taxa with the capacity of plant growth promotion and heavy metals resistance to the rhizosphere. The rhizosphere soil of Se treatment was specifically enriched with Lysobacter, Rhodanobacter, Micrococcales, Paenarthrobacter, and Adhaeribacter, while from class Bacilli to genus Bacillus enriched extensively and specifically in the rhizosphere of B. proteolyticus SES + Se treatment. Furthermore, five functional beneficial rhizosphere microbes including: Microbacterium sp., Pseudomonas extremaustralis, Bacillus amyloliquefaciens, Priestia megaterium, and Bacillus subtilis were isolated from the two treatments with the best remediation effect and synthetic communities (SynComs) were constructed. SynComs inoculation experiment further demonstrated the role of specific beneficial microbes in regulating the bioavailability of heavy metals. Results revealed that Se supplementation efficiently facilitated the phytoextraction of combined Cu-Cd-Cr contaminated soil, and B. proteolyticus SES inoculation showed the synergistical enhancement effect in the presence of Se.


Assuntos
Bacillus , Lolium , Metais Pesados , Selênio , Poluentes do Solo , Cádmio/análise , Cromo , Solo , Metais Pesados/análise , Biodegradação Ambiental , Poluentes do Solo/análise , Rizosfera
13.
Tree Physiol ; 43(4): 597-610, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36611002

RESUMO

Nutritional enhancement has been reported to effectively relieve infected symptoms of Huanglongbing, one of the most destructive diseases of citrus. However, few studies focused on the role of plant nutrition in citrus plant-vector (Asian citrus psyllid; Diaphorina citri Kuwayama) interactions, which is regarded as an important part to develop an effective management strategy. METHOD: In the present study, a hydroponic culture was carried out to evaluate the effects of boron deficiency on psyllid feeding process to decode the molecular/biochemical basis of host-psyllid interaction. RESULTS: Boron deficiency was observed to play a major role in accelerating the release of volatile organic compounds, especially methyl salicylate, affecting the shikimic acid pathway through an elevated synthesis of shikimic acid, l-phenylalanine, 3-phenylpyruvic acid and salicylic acid. These changes made citrus leaf more attractive to psyllid adults. Meanwhile, boron deficiency evidently decreased the boron concentration of leaf cell wall fractions, thereby, weakened the structural stability by affecting pectin and cellulose formations. A significant decrease of cell wall mechanical strength was observed in boron-deficiency leaf, which could be the critical reasons to reduce piercing and to increase phloem ingestion during psyllid feeding. CONCLUSION: Our study demonstrated that boron deficiency facilitated the feeding behavior of psyllid adults through elevated release of methyl salicylate, coupled with weakened mechanical properties of cell wall.


Assuntos
Citrus , Hemípteros , Compostos Orgânicos Voláteis , Animais , Hemípteros/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Boro/metabolismo , Boro/farmacologia , Ácido Chiquímico/metabolismo , Citrus/metabolismo , Folhas de Planta/fisiologia , Doenças das Plantas
14.
J Hazard Mater ; 442: 130066, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36193614

RESUMO

Exploration of the mechanisms of cadmium (Cd) activation mediated by the rhizosphere process is important to advance our understanding of Cd accumulation in plants. In this study, two oilseed rape cultivars (L338, L351) with varied Cd accumulation traits were applied and the responses of their rhizosphere ecology to Cd stress were investigated by metabolome and microbiome. The results showed that shoot Cd accumulations in L338 accounted for 54.16% and 64.76% of those in L351 under low and high Cd contamination, respectively. Moreover, the cultivars response of rhizosphere process reflected that the lower pH and higher Cd mobility were assigned to the characters of L351, which were induced by the secretion of carboxylic acid (e.g. Acetaminophen cysteine, N-Fructosyl alliin) and the enrichment of bacterial taxa with the capacities of Cd resistant and activation (e.g. Sphingomonas, Flavobacterium, Neorhizobium, Altererythrobacter). Conclusively, the varied Cd accumulation traits of two oilseed rape cultivars were not only derived from the Cd transfer ability, it would be ascribed to Cd mobility regulated by rhizosphere processes as well. The results provide baseline data and a new perspective on the cultivar response of Cd accumulation, thus maintaining cleaner production of oilseed rape.


Assuntos
Brassica napus , Poluentes do Solo , Cádmio/análise , Biodegradação Ambiental , Exsudatos e Transudatos/química , Ácidos Carboxílicos , Raízes de Plantas/química
15.
Plants (Basel) ; 11(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365397

RESUMO

The effects of the increased soil copper (Cu) on fruit quality due to the overuse of Cu agents have been a hot social issue. Seven representative citrus orchards in Guangxi province, China, were investigated to explore the fruit quality characteristics under different soil Cu levels and the relationship between soil-tree Cu and fruit quality. These results showed that pericarp color a value, titratable acid (TA), and vitamin C (Vc) were higher by 90.0, 166.6, and 22.4% in high Cu orchards and by 50.5, 204.2, and 55.3% in excess Cu orchards, compared with optimum Cu orchards. However, the ratio of total soluble solids (TSS)/TA was lower by 68.7% in high Cu orchards and by 61.6% in excess Cu orchards. With the increase of soil Cu concentrations, pericarp color a value and Vc were improved, TA with a trend of rising first then falling, and TSS/TA with a trend of falling first then rising were recorded. As fruit Cu increased, pericarp color a value and TSS reduced and as leaf Cu increased, TSS/TA decreased while Vc was improved. Moreover, a rise in soil Cu enhanced leaf Cu accumulation, and a rise in leaf Cu improved fruit Cu accumulation. Fruit Cu accumulation reduced fruit quality by direct effects, leaf Cu improved fruit quality by direct and indirect effects. Soil Cu affected fruit quality by indirect effects by regulating leaf Cu and fruit Cu. Therefore, reasonable regulation and control of soil Cu concentrations can effectively increase pericarp color, sugar, and acid accumulation in citrus fruit.

16.
J Fungi (Basel) ; 8(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35887486

RESUMO

Tomato cultivation is seriously affected by infection from Botrytis cinerea. The safe and effective control of tomato gray mold remains elusive. Plant-related microbial communities regulate not only plant metabolism but also plant immune systems. In this study, we observed that Selenium application in soil combined with foliar spraying of methyl jasmonate could reduce Botrytis cinerea infection in tomato fruits and leaves and improve tomato fruit quality. The infection rate of leaves decreased from 42.19% to 25.00%, and the vitamin C content increased by 22.14%. The bacterial community structure of the tomato was studied by using amplicon sequencing technology. The leaf bacterial alpha diversity of tomatoes treated with Se plus methyl jasmonate was significantly higher than that of the control. Then we isolated five strains antagonistic to Botrytis cinerea in vitro from tomato leaves in the treatment of Se plus methyl jasmonate. The antagonistic strains were identified as Bacillus subtilis and Bacillus velezensis. Spraying mixed antagonistic strain suspension significantly inhibited the diameter of Botrytis cinerea with an inhibition rate of 40.99%. This study revealed the key role of plant-beneficial bacteria recruited by Se combined with methyl jasmonate in improving tomato plant disease resistance. These findings may benefit our understanding of the new regulation of microorganisms on Botrytis cinerea.

17.
Chemosphere ; 305: 135471, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35764111

RESUMO

Phosphorus-modified biochars are considered as good materials for the removal of heavy metals from wastewater. However, the efficacy of ammonium polyphosphate-modified biochar in cadmium (Cd(II)) adsorption remains largely unknown. In this work, the biochar was respectively modified with ammonium polyphosphate (PABC), phosphoric acid (PHBC) and ammonium dihydrogen phosphate (PNBC) to enhance its adsorption performance for heavy metals from wastewater. The properties of biochar before and after modification and P speciation on the surface of the modified biochar were investigated with FTIR, SEM-EDS, XPS, XRD and 31P NMR, and the adsorption capacity was evaluated by batch adsorption experiments. The results demonstrated that the optimal adsorption performance could be achieved at the solution pH = 4, and the pseudo-second-order and Langmuir models could well describe the Cd(II) adsorption process. The maximum adsorption capacity of PABC, PHBC and PNBC for Cd(II) was 155, 138 and 99 mg g-1, which were 4.84, 4.32 and 3.10 folds that of original biochar, respectively. The 31P NMR showed that orthophosphate accounted for 82.1%, 62.8% and 54.5% of P in PABC, PHBC and PNBC, respectively, which decreased to 28.24%, 33.51% and 29.34% after Cd(II) adsorption, indicating that the orthophosphate ratio in P-modified biochar surface could significantly affect Cd adsorption by forming phosphate precipitate. This work implies that the PABC has greater potential in the removal of Cd from wastewater relative to PHBC and PNBC.


Assuntos
Compostos de Amônio , Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cádmio/análise , Carvão Vegetal/química , Cinética , Polifosfatos , Águas Residuárias , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
18.
Environ Res ; 212(Pt C): 113423, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35537500

RESUMO

Earthworm activities not only increase nitrogen (N) uptake by crops, but also lead to N losing to environment. Thus, the present study examined the transformation of 15N-labeled urea with and without earthworms (Metaphire guillelmi) in a soil-lettuce system. We evaluated lettuce 15N uptake, 15N losses including N2O emission, NH3 volatilization and leaching, as well as 15N remaining in soil. Results showed that 15N-urea uptakes by lettuce significantly increased from 33.07% to 42.72% with earthworm presence. However, little difference was found on the total amounts of leaching and gaseous losses (N2O emission and NH3 volatilization) from 15N-urea between the treatment with and without earthworms (4.04 and 5.38%, respectively). Most of the 15N-urea remained in the soil, accounting for 48.44% and 60.65% of the 15N-urea in soil with and without earthworm presence. We conclude that earthworms enhanced the transfer of 15N-urea to lettuce without appreciably increasing the 15N-urea loss from soil to the environment.


Assuntos
Oligoquetos , Agricultura/métodos , Animais , Fertilizantes , Lactuca , Nitrogênio/análise , Solo , Ureia
19.
Genomics ; 114(2): 110291, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35139428

RESUMO

Citrus fruits exhibit vivid color and are favored extensively. However, the biochemical and molecular mechanism of Citrus Reticulata Blanco fruits coloring, especially the effect of transplantation on fruits coloring, is unclear. Herein, RNA-Seq and carotenoids profiling were applied to investigate the effect of transplantation on Orah mandarin fruits coloring. Transplantation induces fruit color shallowing, Ca2+ and ACC level declining and IAA level increasing. Transplantation induced variation in fruit skin and pulp carotenoids, mainly ß-citraurin as one of the important pigments of citrus peel. 2253 up-regulated genes, 1103 down-regulated genes in skin and 815 up-regulated genes, 534 down-regulated genes in pulp of transplanted tree fruits were identified by RNA-Seq. The DEGs involved hormone signal, carotenoids biosynthesis and TFs such as MYB and bHLH family TFs. The carotenoid cleavage dioxygenase gene (Ciclev10028113m.g) is positively correlated with ß-citraurin and regulated directly and/or indirectly by MYB1R1, PIF4, ACC and IAA. Integrative analyses revealed potential molecular insights into Orah mandarin peel color variation during transplantation.


Assuntos
Citrus , Carotenoides/análise , Citrus/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma
20.
J Hazard Mater ; 423(Pt B): 127115, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34537635

RESUMO

Lipids are the structural constituents of cell membranes and play crucial roles in plant adaptation to abiotic stresses. The aim of this study was to use glycerolipidomic and transcriptomic to analyze the changes in lipids metabolism induced by cadmium (Cd) exposure in wheat. The results indicated that Cd stress did not decrease the concentrations of monogalactosyldiacyglycerol (MGDG), phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and phosphatidic acid at 6 h, but decreased digalactosyldoacylglycerol (DGDG), MGDG, PC, phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylserine (PS) and LPC concentrations in wheat root at 24 h. Although the concentrations of highly abundant glycerolipids PC and PE were decreased, the ratios of PC/PE increased thus contributing to wheat adaptation to Cd stress. Cd did not reduce the extent of total lipid unsaturation due to the unchanged concentrations of high abundance species of C36:4, C34:2, C34:3 and C36:6 at 6 h, indicative of their roles in resisting Cd stress. The correlation analysis revealed the glycerolipids species experiencing co-metabolism under Cd stress, which is driven by the activated expression of genes related to glycerolipid metabolism, desaturation and oxylipin synthesis. This study gives insights into the changes of glycerolipids induced by Cd and the roles in wheat adaptation to Cd stress.


Assuntos
Cádmio , Triticum , Cádmio/toxicidade , Fosfatidilcolinas , Estresse Fisiológico , Transcriptoma , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...