Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826194

RESUMO

Diagnosing language disorders associated with autism is a complex and nuanced challenge, often hindered by the subjective nature and variability of traditional assessment methods. Traditional diagnostic methods not only require intensive human effort but also often result in delayed interventions due to their lack of speed and specificity. In this study, we explored the application of ChatGPT, a state-of-the-art large language model, to overcome these obstacles by enhancing diagnostic accuracy and profiling specific linguistic features indicative of autism. Leveraging ChatGPT's advanced natural language processing capabilities, this research aims to streamline and refine the diagnostic process. Specifically, we compared ChatGPT's performance with that of conventional supervised learning models, including BERT, a model acclaimed for its effectiveness in various natural language processing tasks. We showed that ChatGPT substantially outperformed these models, achieving over 13% improvement in both accuracy and F1-score in a zero-shot learning configuration. This marked enhancement highlights the model's potential as a superior tool for neurological diagnostics. Additionally, we identified ten distinct features of autism-associated language disorders that vary significantly across different experimental scenarios. These features, which included echolalia, pronoun reversal, and atypical language usage, were crucial for accurately diagnosing ASD and customizing treatment plans. Together, our findings advocate for adopting sophisticated AI tools like ChatGPT in clinical settings to assess and diagnose developmental disorders. Our approach not only promises greater diagnostic precision but also aligns with the goals of personalized medicine, potentially transforming the evaluation landscape for autism and similar neurological conditions.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36078531

RESUMO

Hydraulic fracturing or fracking has led to a rapid growth of oil and gas production in the United States, but the impact of fracking on public health is an important but underresearched topic. We designed a methodology to study spatiotemporal correlations between the risk of fracking and stroke mortality. An annualized loss expectancy (ALE) model is applied to quantify the risk of fracking. The geographically and temporally weighted regression (GTWR) model is used to analyze spatiotemporal correlations of stroke mortality, fracking ALE, and nine other socioeconomic- and health-related factors. The analysis shows that fracking ALE is moderately correlated with stroke mortality at ages over 65 in most states of fracking, in addition to cardiovascular disease and drug overdose being positively correlated with stroke mortality. Furthermore, the correlations between fracking ALE and stroke mortality in men appear to be higher than in women near the Marcellus Shale, including Ohio, Pennsylvania, West Virginia, and Virginia, while stroke mortality among women is concentrated in the Great Plains, including Montana, Wyoming, New Mexico, and Oklahoma. Lastly, within two kilometers of the fracking mining activity, the level of benzene in the air was found to be significantly correlated with the fracking activity in Colorado.


Assuntos
Fraturamento Hidráulico , Acidente Vascular Cerebral , Feminino , Humanos , Masculino , Mineração , Gás Natural , Pennsylvania , Análise Espaço-Temporal , Acidente Vascular Cerebral/epidemiologia , Estados Unidos/epidemiologia
3.
Front Chem ; 10: 943055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873046

RESUMO

The superhydrophobic coatings with excellent performance are prepared on the brass substrate to improve its application limitations in real production. In this article, the superhydrophobicity was obtained by the modification of TiO2 nanoparticles, and the FAS/STA-TiO2 superhydrophobic coating of the composite structure was obtained by modification of 1, 1, 2H, 2H-perfluoroquine trimethyl silane (FAS). By using scanning electron microscopes (SEMs), X-ray spectrometers (EDSs), and Fourier transform infrared (FTIR) spectrometers, the surface morphology, chemical composition, and functional group structure of the samples were analyzed in turn. Experiments show that the water contact angle of the FAS-modified STA-TiO2 coating reaches 161.3°, and the sliding angle is close to 1.2°. Based on the chalk dust containment, it has enabled noticeable self-cleaning properties. The composite superhydrophobic coating also presents enhanced adhesive strength compared with the single coating by the tape peeling experiment. Moreover, the composite coating has a corrosion current density as low as 8.41 × 10-7 A/cm2, and the largest |Z| in low frequency in a 3.5% NaCl solution to achieve better protection of the brass substrate. It is also not difficult to see that FAS/STA-TiO2 coating can not only improve the corrosion resistance of brass substrates but also be applied to other metal substrates.

4.
Phys Chem Chem Phys ; 22(27): 15649-15657, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32618305

RESUMO

Hydrogen production from water splitting by sunlight is a promising approach to solve the increasing energy and environmental crises, and the two-dimensional (2D) g-C3N4 monolayer is a red star in this realm. However, it suffers from low quantum efficiency caused by the fast combination of photogenerated electrons and holes. In this work, we investigate the electronic and photocatalytic properties of three newly proposed g-C3N4/SiP-GaS-α, -ß and -γ heterojunctions via first principles predictions. Theoretical results demonstrate that the three g-C3N4/SiP-GaS heterojunctions exhibit direct bandgaps of ∼2.2 eV, and have a type-II band alignment with the valence band maximum (VBM) located at the g-C3N4 layer and the conduction band minimum (CBM) at the SiP-GaS layer. Furthermore, their band edges straddle the redox potential of water in a wide range of biaxial strain. Their absorption coefficients are several times larger than that of most previously discovered 2D heterojunctions. Moreover, the in-built electric field adds a driving force to separate photogenerated electrons and holes. The oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) successfully take place on the g-C3N4 and SiP-GaS layers, respectively. Briefly, separated charge carriers, suitable band edges and strong visible-light absorbance, successful OER and HER enable the three g-C3N4/SiP-GaS heterojunctions to be promising water-splitting photocatalysts.

5.
Front Psychol ; 11: 580287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519600

RESUMO

Facial expressions of emotion play an important role in human social interactions. However, posed expressions of emotion are not always the same as genuine feelings. Recent research has found that facial expressions are increasingly used as a tool for understanding social interactions instead of personal emotions. Therefore, the credibility assessment of facial expressions, namely, the discrimination of genuine (spontaneous) expressions from posed (deliberate/volitional/deceptive) ones, is a crucial yet challenging task in facial expression understanding. With recent advances in computer vision and machine learning techniques, rapid progress has been made in recent years for automatic detection of genuine and posed facial expressions. This paper presents a general review of the relevant research, including several spontaneous vs. posed (SVP) facial expression databases and various computer vision based detection methods. In addition, a variety of factors that will influence the performance of SVP detection methods are discussed along with open issues and technical challenges in this nascent field.

6.
J Colloid Interface Sci ; 548: 224-232, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31004955

RESUMO

Superhydrophobic surfaces have important applications in various fields. However, the development of artificial superhydrophobic surfaces for large scale applications is hindered by their poor mechanical and chemical robustness. In this study, a simple, inexpensive, and scalable strategy was reported to create a versatile superhydrophobic surface that used sandpaper as a template to lock-in the fluorinated inorganic/organic film. The surface exhibited exceptional mechanical robustness, pressure stability, and repellency to hot water. Moreover, the surface could be widely stuck to any substrate by using a double-sided adhesive or glue. Interestingly, the surface with superamphiphobic properties exhibited superior self-cleaning and anti-snow/icing performance even after its top layer was exposed to 50 abrasion cycles with sandpaper. Besides, it had excellent repellency to corrosive liquids and substances with low-surface-energy. We envision that the superhydrophobic sandpaper surface will have a potential application in infrastructure and medicine, and can also behave as an effective antifouling and anti-snow/icing material operating in harsh environments.

7.
RSC Adv ; 9(44): 25336-25344, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35530066

RESUMO

Nonlinear optical (NLO) materials have an ability to generate new coherent light. At the present stage, three dimensional (3D) mid-infrared NLO materials suffer from various deficiencies such as low laser damage thresholds (LDTs) for AgGaQ2 (Q = S, Se); the band gaps of most intensively studied two-dimensional (2D) NLO materials are not wide enough to avoid two-photon absorption (TPA); a steady NLO property regardless of diameter and chirality is absent in one-dimensional (1D) single-walled nanotubes (SWNTs). In this research, the electronic and second harmonic generation (SHG) properties of planar graphitic ZnS (g-ZnS) monolayer, buckling reconstructed ZnS (R-ZnS) monolayer which is synthesized in a recent experiment, and rolled-up SWNTs are investigated with first-principles simulations. Theoretical results suggest the SHG coefficients of planar g-ZnS, buckling R-ZnS and rolled-up SWNTs are comparable with that of AgGaS2 crystals. The band gaps of planar g-ZnS and ZnS SWNTs are ∼3.8 eV, and that of buckling R-ZnS is as wide as ∼4.0 eV, indicating high LDTs and reduced TPA as NLO materials. The TPA edges can be further blue shifted by using incident light beams with a polarized electric field perpendicular to buckling R-ZnS. On the other hand, the TPA edges of ZnS SWNTs are nearly not affected by diameter and chirality. The SHG coefficients of ZnS SWNTs are much less influenced by chirality and diameter than those of SiC, GeC and BN SWNTs. Therefore, they are superior ultrathin NLO materials, and especially have a potential application in the mid-infrared regime where high-quality NLO crystals are emergently needed.

8.
ACS Appl Mater Interfaces ; 9(19): 16571-16580, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28441007

RESUMO

Superhydrophobic surfaces with self-cleaning properties have been developed based on roughness on the micro- and nanometer scales and low-energy surfaces. However, such surfaces are fragile and stop functioning when exposed to oil. Addressing these challenges, here we show an ultrarobust self-cleaning surface fabricated by a process of metal electrodeposition of a rough structure that is subsequently coated with fluorinated metal-oxide nanoparticles. Scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction were employed to characterize the surfaces. The micro- and nanoscale roughness jointly with the low surface energy imparted by the fluorinated nanoparticles yielded surfaces with water contact angle of 164.1° and a sliding angle of 3.2°. Most interestingly, the surface exhibits fascinating mechanical stability after finger-wipe, knife-scratch, sand abrasion, and sandpaper abrasion tests. It is found that the surface with superamphiphobic properties has excellent repellency toward common corrosive liquids and low-surface-energy substances. Amazingly, the surface exhibited excellent self-cleaning ability and remained intact even after its top layer was exposed to 50 abrasion cycles with sandpaper and oil contamination. It is believed that this simple, unique, and practical method can provide new approaches for effectively solving the stability issue of superhydrophobic surfaces and could extend to a variety of metallic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA