Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38541510

RESUMO

Thermally induced pores (TIPs) are generally the source of fatigue crack initiation in the powder metallurgy (PM) Ni-based FGH96 superalloy. The effect of TIPs on fatigue crack initiation on the surface of the FGH96 superalloy was detected using scanning electron microscopy (SEM). The cause of fatigue crack deflection was studied using electron backscatter diffraction (EBSD) analysis. The results indicated that there are two states of TIPs including isolated TIPs and clustered TIPs located at the grain boundary. The investigation of crack initiation and propagation around TIPs was conducted in detail through the comprehensive integration of experimental findings and computational results. For cracks initiated by isolated TIPs, the maximum equivalent size and the ratio of the vertical-parallel axis to the loading direction of the TIPs reveal a linear relationship, and both of them determine crack initiation. Regarding clustered TIPs, the constituent pores of the clustered TIPs will compete to initiate cracks based on the experimental results, and the largest pore will be more likely to initiate cracking. Moreover, the results showed that fatigue crack propagation can be hindered by hard-orientation grains and twins with a low Schmid factor (SF). Large-angle crack deflection due to twins with a low SF can significantly increase crack length and resistance to crack propagation.

2.
Materials (Basel) ; 15(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36013792

RESUMO

A geometric partitioning strategy was proposed to evaluate the mechanical properties of three-dimensional needled composites. The microstructure of the composite was divided to accurately characterize the mesoscopic damage in the needling regions and the macroscopic damage in the un-needling regions, to balance the computational accuracy and efficiency. The general method of cells (GMC) models along with the damage criteria were established for different material phases in the needling regions, while the continuum damage mechanics (CDM) model was adopted to portray the damage evolution in the un-needling regions. Through conducting the multi-scale simulation, the mechanical properties of the needled composites were predicted, based upon which the effect of repeated needling on the mesoscale damage process was further investigated. Results showed that the predictions are in good agreement with the experiments, with a relative error of 2.6% for strength and 4.4% for failure strain. The proposed approach can provide guidance for the process optimization and design of needled composites.

3.
Materials (Basel) ; 15(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35057367

RESUMO

The creep-fatigue crack growth problem remains challenging since materials exhibit different linear and nonlinear behaviors depending on the environmental and loading conditions. In this paper, we systematically carried out a series of creep-fatigue crack growth experiments to evaluate the influence from temperature, stress ratio, and dwell time for the nickel-based superalloy GH4720Li. A transition from coupled fatigue-dominated fracture to creep-dominated fracture was observed with the increase of dwell time at 600 °C, while only the creep-dominated fracture existed at 700 °C, regardless of the dwell time. A concise binomial crack growth model was constructed on the basis of existing phenomenal models, where the linear terms are included to express the behavior under pure creep loading, and the nonlinear terms were introduced to represent the behavior near the fracture toughness and during the creep-fatigue interaction. Through the model implementation and validation of the proposed model, the correlation coefficient is higher than 0.9 on ten out of twelve sets of experimental data, revealing the accuracy of the proposed model. This work contributes to an enrichment of creep-fatigue crack growth data in the typical nickel-based superalloy at elevated temperatures and could be referable in the modeling for damage tolerance assessment of turbine disks.

4.
Sensors (Basel) ; 20(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331376

RESUMO

In this paper, a new damage feature, spectral area, was extracted to effectively detect crack location by studying the deformation mechanism of fiber Bragg grating (FBG) reflection spectra. In order to verify the robustness and reliability of spectral area to detect crack location, the following work was carried out: Firstly, the strain information was extracted by extended finite element method (XFEM) with fatigue crack propagation. The transmission matrix method (TMM) was used to simulate FBG reflection spectra using numerical results. Secondly, the fatigue crack growth monitoring experiment based on FBG sensors was carried out, and the digital image correlation (DIC) method was used to measure the strain values at the placement of FBG sensors with crack propagation. The temperature characteristic test of FBG was carried out to investigate the influence of temperature variation on the spectral area. The results presented that the spectral area was insensitive to temperature variation and experimental noise, and was greatly sensitive to the complex non-uniform strain field cause by crack damage. Moreover, compared with the 5 mm FBG sensor, the 10 mm FBG sensor showed a larger critical detection range for crack damage. Therefore, the spectral area can be used as a reliable damage feature to detect the crack location quantitatively based on the simulated and experimental results.

5.
Materials (Basel) ; 13(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905940

RESUMO

This thematic issue on advanced simulation tools applied to materials development and design predictions gathers selected extended papers related to power generation systems, presented at the XIX International Colloquium on Mechanical Fatigue of Metals (ICMFM XIX) organized at University of Porto, Portugal, in 2018. Guest editors express special thanks to all contributors for the success of this special issue-authors, reviewers, and journal staff.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...