Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 814: 152872, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34990677

RESUMO

Pakistan is a developing country with a rapidly growing population. It is currently facing serious economic and energy challenges. Pakistan's energy demand is increasing by the day, and it now stands at 84 MTOE. Currently, the use of fossil fuels dominates Pakistan's energy sector. Conversely, indigenous fossil fuel resources are rapidly depleting and will be unable to meet rising energy demands in the future. Therefore, to withstand its energy needs, the country will need to explore alternative energy production methods. Biomass is one of the alternatives that has enormous potential to help Pakistan combat its growing energy crisis. In this review, we first present an overview of bioenergy, biomass resources, and biomass conversion technologies. We then discuss in detail the current state of the energy mix of Pakistan. Subsequently, we show that annual production of about 121 MT of agricultural residues, 427 MT of animal manure, and 7.5 MT of MSW in Pakistan offer a variety of bioenergy options ranging from biofuels to bio-electricity production. Overall, these biomass resources in Pakistan have the potential to generate 20,709 MW of bio-electricity and 12,615 million m3 of biogas annually in Pakistan. Though these resources hold promising potential for bioenergy production in the country, however, there are some critical challenges that need to be considered, and some of which are extremely difficult to overcome for a developing country like Pakistan. This work is expected to provide a useful basis for biomass management and utilization in Pakistan to harvest eco-friendly and sustainable green energy locally.


Assuntos
Biocombustíveis , Combustíveis Fósseis , Animais , Biomassa , Eletricidade , Paquistão
2.
Sci Total Environ ; 790: 148199, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34111785

RESUMO

Dairy manure (DM) is a kind of cheap cellulosic biomass resource which includes lignocellulose and mineral nutrients. Random stacks not only leads damage to the environment, but also results in waste of natural resources. The traditional ways to use DM include returning it to the soil or acting as a fertilizer, which could reduce environmental pollution to some extent. However, the resource utilization rate is not high and socio-economic performance is not utilized. To expand the application of DM, more and more attention has been paid to explore its potential as bioenergy or bio-chemicals production. This article presented a comprehensive review of different types of bioenergy production from DM and provided a general overview for bioenergy production. Importantly, this paper discussed potentials of DM as candidate feedstocks not only for biogas, bioethanol, biohydrogen, microbial fuel cell, lactic acid, and fumaric acid production by microbial technology, but also for bio-oil and biochar production through apyrolysis process. Additionally, the use of manure for replacing freshwater or nutrients for algae cultivation and cellulase production were also discussed. Overall, DM could be a novel suitable material for future biorefinery. Importantly, considerable efforts and further extensive research on overcoming technical bottlenecks like pretreatment, the effective release of fermentable sugars, the absence of robust organisms for fermentation, energy balance, and life cycle assessment should be needed to develop a comprehensive biorefinery model.


Assuntos
Biocombustíveis , Esterco , Biomassa , Fermentação , Tecnologia
3.
Appl Microbiol Biotechnol ; 105(4): 1709-1720, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33512573

RESUMO

Biological ethylene production is a promising sustainable alternative approach for fossil-based ethylene production. The high glucose utilization of Z. mobilis makes it as a promising bioethylene producer. In this study, Zymomonas mobilis has been engineered to produce ethylene through the introduction of the synthetic ethylene-forming enzyme (EFE). We also investigated the effect of systematically knocking out the competitive metabolic pathway of pyruvate in an effort to improve the availability of pyruvate for ethylene production in Z. mobilis expressing EFE. Guided by these results, we tested a number of conjectures that could improve the α-ketoglutarate supply. Optimization of these pathways and different substrate supplies resulted in a greater production of ethylene (from 1.36 to 12.83 nmol/OD600/mL), which may guide future engineering work on ethylene production using other organisms. Meanwhile, we achieved an ethylene production of 5.8 nmol/OD600/mL in the ZM532-efe strain using enzymatic straw hydrolysate of corn straw as the sole carbon source. As a preferred host in biorefinery technologies using lignocellulosic biomass as feedstock, heterologous expression of EFE in Z. mobilis converts the non-ethylene producing strain into an ethylene-producing one using a metabolic engineering approach, which is of great significance for the utilization of cellulosic biomass in the future. KEY POINTS: • Heterologous expression of EFE in Z. mobilis successfully converted the non-ethylene producing strain into an ethylene producer (1.36 nmol/OD600/mL). Targeted modifications of the central carbon metabolism can effectively improve ethylene production (peak production: 8.3 nmol/OD600/mL). • The addition of nutrients to the medium can further increase the production of ethylene (peak production: 12.8 nmol/OD600/mL). • The ZM532-efe strain achieved an ethylene production of 5.8 nmol/OD600/mL when enzymatic hydrolysate of corn straw was used as the sole carbon source.


Assuntos
Zymomonas , Biomassa , Etilenos , Engenharia Metabólica , Zea mays , Zymomonas/genética
4.
Biotechnol Biofuels ; 13: 28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32127915

RESUMO

BACKGROUND: Pretreatment of lignocellulosic biomass generates different types of inhibitors (e.g., furfural and acetic acid), which could remarkably inhibit subsequent ethanol fermentation. Here, biochar as an additive in the fermentation broth was first applied to enhance ethanol production by Z. mobilis wild-type strain ZM4 in the presence of typical inhibitors. RESULTS: This study showed that the biochar-mediated tolerance to furfural and acetic acid for the strain Z. mobilis ZM4 was the highest reported level, resulting in much higher ethanol productivity under stress conditions than that in non-treated conditions. Further analysis showed that adsorptive detoxification was not the controlling factor for enhanced ethanol production under stress conditions, attributed to its low removal of furfural (< 20%) and incapability of acetic acid removal. When biochar was filtered from the biochar-treated inhibitor-containing broth, it still showed enhanced ethanol production. Furthermore, Z. mobilis immobilized on biochar was also observed. Thus, biochar extracts in the fermentation broth and cell immobilization on biochar might be the controlling factors for enhanced ethanol production under stress conditions. CONCLUSIONS: These results indicate that biochar-mediated enhanced ethanol fermentation (BMEEF) might be a promising strategy for ethanol production from lignocellulosic biomass.

5.
Appl Biochem Biotechnol ; 189(1): 129-143, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30906971

RESUMO

Agro-stovers are the most abundant substrates for producing lactic acid, which has great potential application in the production of biodegradable and biocompatible polylactic acid polymers. However, chemical pretreatments on agro-stovers generate inhibitors that repress the subsequent lactic acid fermentation. In this study, three bacterial strains (Enterococcus faecalis B101, Acinetobacter calcoaceticus C1, and Pseudomonas aeruginosa CS) isolated from dye-polluted soils could utilize phenolic inhibitor mimics (vanillin, 4- hydroxybenzaldehyde, or syringaldehyde) from alkaline pretreated corn stovers as a sole carbon source. Lactic acid titer increased from 27.42 g/L (Bacillus coagulans LA204 alone) to 44.76 g/L (CS and LA204) using 50 g/L glucose with 1 g/L 4-hydroxybenzaldehyde added. Lactic acid production from 50 g/L ammonia pretreated corn stover was increased nearly twofold by inoculating phenolic degradation bacteria and lactic acid bacteria (C1& Lactobacillus pentosus FL0421). In the control (FL0421 alone), only 16.98 g/L of lactic acid was produced. The isolated and identified strains degraded the phenolic compounds and increased the lactic acid production from glucose and ammonia pretreated corn stover. These characteristics of the strains support industrial application with efficient in situ detoxification of phenolic compounds during lactic acid production from agro-stovers using simultaneous saccharification and fermentation (SSF).


Assuntos
Bactérias/metabolismo , Corantes/metabolismo , Inativação Metabólica , Ácido Láctico/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo
6.
J Hazard Mater ; 351: 138-146, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529562

RESUMO

Zerovalent iron (ZVI) is an environmental-friendly reactive reagent for recovering heavy metals. However, the detailed recovery mechanism remains unclear due to a lack of quantitative analysis of recovery products. Herein, microscale ZVI, nanoscale ZVI and Ni/Fe nanoparticles were used to recover Pb(II) in aqueous solution and a sequential extraction procedure (SEP) was applied to determine the formed lead species quantitatively. At high initial Pb(II) concentration (500 mg L-1), more than 99.5% of Pb(II) was immobilized by Ni/Fe and n-ZVI, whereas m-ZVI caused inferior recovery efficiency (<25%). XRD and XPS results revealed that Pb(II) was reduced to Pb0 prior to the formation of metal hydroxides as the external shell of ZVI. SEP results showed that the fraction bound to carbonates (PbO), fraction bound to iron oxides and exchangeable fraction were the main lead species conducted by Ni/Fe, n-ZVI and m-ZVI, respectively. Consequently, (co-)precipitation and specific adsorption dominated Pb(II) recovery by Ni/Fe and n-ZVI, whereas m-ZVI conducted Pb(II) recovery mainly via weak adsorption. The reactivity of ZVI toward Pb(II) followed the increasing order of m-ZVI << n-ZVI ≤ Ni/Fe. The detailed mechanisms of Pb(II) recovery conducted by different ZVI were proposed.

7.
Biotechnol Biofuels ; 10: 236, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29046722

RESUMO

BACKGROUND: Environmental issues, such as the fossil energy crisis, have resulted in increased public attention to use bioethanol as an alternative renewable energy. For ethanol production, water and nutrient consumption has become increasingly important factors being considered by the bioethanol industry as reducing the consumption of these resources would decrease the overall cost of ethanol production. Biogas slurry contains not only large amounts of wastewater, but also the nutrients required for microbial growth, e.g., nitrogen, ammonia, phosphate, and potassium. Therefore, biogas slurry is an attractive potential resource for bioethanol production that could serve as an alternative to process water and nitrogen sources. RESULTS: In this study, we propose a method that replaces the process water and nitrogen sources needed for cellulosic ethanol production by Zymomonas mobilis with biogas slurry. To test the efficacy of these methods, corn straw degradation following pretreatment with diluted NaOH and enzymatic hydrolysis in the absence of fresh water was evaluated. Then, ethanol fermentation using the ethanologenic bacterial strain Z. mobilis ZMT2 was conducted without supplementing with additional nitrogen sources. After pretreatment with 1.34% NaOH (w/v) diluted in 100% biogas slurry and continuous enzymatic hydrolysis for 144 h, 29.19 g/L glucose and 12.76 g/L xylose were generated from 30 g dry corn straw. The maximum ethanol concentration acquired was 13.75 g/L, which was a yield of 72.63% ethanol from the hydrolysate medium. Nearly 94.87% of the ammonia nitrogen was depleted and no nitrate nitrogen remained after ethanol fermentation. The use of biogas slurry as an alternative to process water and nitrogen sources may decrease the cost of cellulosic ethanol production by 10.0-20.0%. By combining pretreatment with NaOH diluted in biogas slurry, enzymatic hydrolysis, and ethanol fermentation, 56.3 kg of ethanol was produced by Z. mobilis ZMT-2 through fermentation of 1000 kg of dried corn straw. CONCLUSIONS: In this study, biogas slurry replaced process water and nitrogen sources during cellulosic ethanol production. The results suggest that biogas slurry is a potential alternative to water when pretreating corn straw and, thus, has important potential applications in cellulosic ethanol production from corn straw. This study not only provides a novel method for utilizing biogas slurry, but also demonstrates a means of reducing the overall cost of cellulosic ethanol.

8.
Microbes Environ ; 32(3): 234-243, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28781346

RESUMO

The methanogenic degradation of hydrocarbons plays an important role in hydrocarbon-contaminated environments in the absence of an external electron acceptor. Members of Syntrophaceae sublineages were previously reported to be responsible for syntrophic alkane degradation. However, limited information is currently available on their physiological capabilities in nature because it is very challenging to cultivate these as-yet uncultured microbes. We herein performed metagenomic sequencing of the methanogenic hexadecane-degrading culture M82 and recovered a nearly complete genome (2.75 Mb, estimated completeness ≥97%) belonging to Syntrophaceae sublineage II. The assembly genome was tentatively named "Candidatus Smithella cisternae strain M82_1". Genes encoding alkylsuccinate synthase for alkane activation were identified, suggesting that this organism is capable of oxidizing alkanes through fumarate addition. This capability was further supported by the detection of methyl pentadecyl succinic acid and methyl tetradecyl succinic acid in cultures amended with hexadecane and pentadecane, respectively. Genes encoding enzymes for the ß-oxidation of long-chain fatty acids and butyrate were also identified. The electron transfer flavoprotein/DUF224 complex is presumed to link electron flow from acyl-CoA dehydrogenase to a membrane hydrogenase or formate dehydrogenase. Although no indications of Rnf complexes were detected, genes encoding electron-confurcating hydrogenase and formate dehydrogenase were proposed to couple the thermodynamically favorable oxidation of ferredoxin to generate H2 and formate from NADH. Strain M82_1 synthesized ATP from acetyl-CoA by substrate-level phosphorylation or F1F0-ATP synthases. These results provide an insight into the potential metabolic traits and ecophysiological roles of the syntrophic alkane degrader Syntrophaceae.


Assuntos
Alcanos/metabolismo , Deltaproteobacteria/classificação , Campos de Petróleo e Gás/microbiologia , Deltaproteobacteria/isolamento & purificação , Metagenoma
9.
Appl Biochem Biotechnol ; 182(2): 755-768, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27981427

RESUMO

Polyhydroxyalkanoates (PHAs) are promising alternatives to plastics since they have similar properties to polyolefin but are biodegradable and biocompatible. Recently, the conversion of propionate wastewater to PHAs by undefined mixed microbial cultures becomes attractive. However, how microbial community changes remains unclear during the enrichment step, which is critical for a robust PHA-producing system. In this study, PHA-accumulating cultures were enriched under feast/famine condition using propionate-rich substrates. Our results showed that during the first 2 h of the enrichment, dissolved oxygen of cultures increased remarkably until saturation, and amounts of C, N, and chemical oxygen demand of cultures decreased significantly to a very low level. High-throughput sequencing revealed that bacterial populations affiliated with Alphaproteobacteria and Bacteroidetes dominated the cultures enriched. Most of these dominant populations contributed to the conversion of short-chain fatty acids to PHAs. Being fed with the substrate rich in propionate but without nitrogen, the cultures enriched could accumulate nearly 27% PHAs at 72 h with higher content of hydroxyvalerate. Our work reveals the process in which environmental microbes responded to propionate-rich condition and shifted to populations for accumulating PHAs; it also will be helpful to develop an efficient PHA-producing system using propionate-rich waste.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Bacteroidetes/crescimento & desenvolvimento , Consórcios Microbianos/fisiologia , Poli-Hidroxialcanoatos/biossíntese , Propionatos/metabolismo , Águas Residuárias/microbiologia , Eliminação de Resíduos de Serviços de Saúde/métodos
10.
Microb Cell Fact ; 15(1): 101, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27287016

RESUMO

BACKGROUND: The cell growth and ethanol yield of Zymomonas mobilis may be detrimentally affected by salt stress frequently present in some biomass-based fermentation systems, leading to a decrease in the rate of sugar conversion to ethanol or other bioproducts. To address this problem, improving the salt tolerance of Z. mobilis is a desirable way. However, limited progress has been made in development of Z. mobilis with higher salt tolerance for some technical challenges in the past decades. Recently, transposon insertion mutant system has been widely used as a novel genetic tool in many organisms to develop mutant strains. In this study, Tn5-based transposon insertion mutagenesis system firstly used for construction of higher salt tolerance strain in Z. mobilis. RESULTS: Approximately 200 Z. mobilis ZM4 mutants were generated by using Tn5-based transposon mutagenesis system. The mutant strain ZMT2 with improved salt tolerance phenotype was obtained by screening on RM agar plates with additional 1 % NaCl. Strain ZMT2 was confirmed to exhibit better fermentation performance under NaCl stress than wild type of strain ZM4. The transposon insertion was located in ZMO1122 (himA) by genome walking. Discruption of himA gene showed that himA may play an important role in response to salt tolerance in Z. mobils. CONCLUSIONS: The mutant strain ZMT2 with a transposon insertion in himA gene of the genome showed obviously higher sugar conversion rate to ethonal under up to 2 % NaCl stress than did the wild ZM4 strain. Besides, ZMT2 exhibited shared fermentative capabilities with wild ZM4 strain under no or low NaCl stress. This report firstly showed that himA played a role in responding to NaCl stress. Furthermore, the result indicated that Tn5-based transposon mutagenesis system was a feasible tool not only for genetic engineering in Z. mobilis strain improvement, but also in tapping resistent genes.


Assuntos
Tolerância ao Sal/genética , Transposases/genética , Zymomonas/genética , Zymomonas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Etanol/metabolismo , Engenharia Genética , Glucose/metabolismo , Mutagênese Insercional , NAD/metabolismo , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Transposases/metabolismo , Zymomonas/crescimento & desenvolvimento
11.
Biosci Biotechnol Biochem ; 80(10): 2025-32, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27251412

RESUMO

A successful start-up enables acceleration of anaerobic digestion (AD) into steady state. The microbial community influences the AD performance during the start-up. To investigate how microbial communities changed during the start-up, microbial dynamics was analyzed via high-throughput sequencing in this study. The results confirmed that the AD was started up within 25 d. Thermophilic methanogens and bacterial members functioning in hydrolysis, acidogenesis, and syntrophic oxidation became predominant during the start-up stage, reflecting a quick adaption of microorganisms to operating conditions. Such predominance also indicated the great contribution of these members to the fast start-up of AD. Redundancy analysis confirmed that the bacterial abundance significantly correlated with AD conditions. The stable ratio of hydrogenotrophic methanogens to aceticlastic methanogens is also important to maintain the stability of the AD process. This work will be helpful to understand the contribution of microbial community to the start-up of AD.


Assuntos
Adaptação Fisiológica , Archaea/metabolismo , Bactérias/metabolismo , Alimentos , Resíduos , Anaerobiose , Archaea/genética , Archaea/isolamento & purificação , Archaea/fisiologia , Bactérias/genética , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Sequenciamento de Nucleotídeos em Larga Escala , Cinética , RNA Ribossômico 16S/genética
12.
Antonie Van Leeuwenhoek ; 109(5): 721-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26979511

RESUMO

A novel facultatively anaerobic bacterium, designated strain LAM0A28(T), was isolated from a saline silt sample collected from the Chinese Sea of Death located in Suining city, Sichuan province, China. Cells of strain LAM0A28(T) were observed to be Gram-stain positive, motile, endospore-forming and straight-rod shaped. Strain LAM0A28(T) was found to be able to grow at 15-45 °C (optimum: 30-35 °C), pH 5.0-10.0 (optimum: 7.5) and 0-5 % NaCl (w/v) (optimum: 0.5 %). The 16S rRNA gene sequence similarity analysis showed that strain LAM0A28(T) is closely related to Paenibacillus jilunlii DSM 23019(T) (97.5 %) and Paenibacillus graminis DSM 15220(T) (97.2 %). The DNA-DNA hybridization values between the isolate and P. jilunlii DSM 23019(T), P. graminis DSM 15220(T) were 30.2 ± 1.6 % and 44.7 ± 2.1 %, respectively. The DNA G+C content was found to be 51.2 mol% as determined by the T m method. The major cellular fatty acids were identified as anteiso-C15:0, C16:0, iso-C16:0 and C14:0. The major isoprenoid quinone was identified as MK-7. The cell wall peptidoglycan was found to contain meso-diaminopimelic acid. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two aminophospholipids and six unidentified lipids. Based on the phylogenetic, phenotypic and chemotaxonomic characteristics, strain LAM0A28(T) is concluded to represent a novel species within the genus Paenibacillus, for which the name Paenibacillus salinicaeni sp. nov. is proposed. The type strain is LAM0A28(T) (=ACCC 00741(T) = JCM 30850(T)).


Assuntos
Paenibacillus/classificação , Paenibacillus/isolamento & purificação , Água do Mar/microbiologia , Anaerobiose , Técnicas de Tipagem Bacteriana , China , DNA Bacteriano/genética , DNA Ribossômico/genética , Paenibacillus/genética , Paenibacillus/fisiologia , Filogenia , Salinidade , Esporos Bacterianos/citologia
13.
J Biotechnol ; 220: 88-9, 2016 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-26806488

RESUMO

The type strain Lentibacillus amyloliquefaciens LAM0015(T) with considerably highly NaCl tolerance is a member of halophiles. Here we report its genome sequence, the first to publish complete genome sequence of the Lentibacillus genus. It contains 3,858,520bp with an average GC content of 42.12%, encoding multiple valuable proteins academically and industrially. The genome sequence of strain LAM0015(T) provides basic information for further elucidation of halophilic mechanism and wider exploitation of functional genes.


Assuntos
Bacillaceae/genética , Genoma Bacteriano , Bacillaceae/isolamento & purificação , Bacillaceae/fisiologia , Composição de Bases , Sequência de Bases , China , Mapeamento Cromossômico , DNA Bacteriano/genética , Tamanho do Genoma , Microbiologia Industrial , Dados de Sequência Molecular , RNA Bacteriano/genética , Cloreto de Sódio , Microbiologia do Solo
14.
Appl Microbiol Biotechnol ; 99(13): 5739-48, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25935346

RESUMO

Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering.


Assuntos
Ácido Acético/metabolismo , Adaptação Biológica , Tolerância a Medicamentos , Etanol/metabolismo , Furaldeído/metabolismo , Zymomonas/genética , Zymomonas/metabolismo , Antibacterianos/metabolismo , Lignina/metabolismo , Engenharia Metabólica , Zymomonas/efeitos dos fármacos
15.
J Hazard Mater ; 286: 118-26, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25562809

RESUMO

In recent years, a potential controversy has arisen that whether the metal speciation in solid matrix determined its electrokinetic (EK) removal efficiency or by contrast. In present study, Cu and Zn in anaerobic digestate were selected as candidates to investigate the relation between the species of metal and EK treatment. The obtained results show that the removal efficiency for each fraction decreased in the order as follows: exchangeable ≥ bound to carbonates > bound to Fe-Mn oxides>bound to organic matters >> residual. For both Cu and Zn, their total removal performance was dependent on their dominant fraction in the digestate. A constant pH maintenance around the digestate via circulation of acid electrolyte is an optional operation because a strong acid atmosphere (pH < 2) around the digestate can be formed automatically as EK time elapses. Despite that many reactions occurred during EK process, the species distribution of Cu and Zn in the digestate determined their total EK removal efficiency essentially.


Assuntos
Cobre/química , Metais Pesados/química , Zinco/química , Anaerobiose , Animais , Carbonatos/química , Eletroquímica , Eletrodos , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Manganês/química , Oxigênio/química , Esgotos , Suínos , Poluentes da Água/química
16.
Carbohydr Polym ; 111: 645-54, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25037399

RESUMO

Bamboo is perennial woody grass, which distributed widely in the world and belonged to the Gramineae family and Bambuseae subfamily. It may be consider as a candidate lignocellulosic substrate for bio-ethanol production for its environmental benefits and higher annual biomass yield. The conversion of bamboo into bio-ethanol, bio-methane, natural food, flavonoids, and functional xylo-oligosaccharides production were reviewed in this paper. Future prospects for research include pretreatment, enzymatic hydrolysis and fermentation will also be performed to improve the whole process of ethanol production more economical. And revealing the molecular regulation mechanism of the fast growth of bamboo will provide chance for improving bamboo or other energy plants biomass yield through genetic engineering.


Assuntos
Biocombustíveis , Biotecnologia , Metabolismo dos Carboidratos , Tecnologia de Alimentos , Sasa/metabolismo , Biocombustíveis/análise , Biomassa , Biotecnologia/métodos , Carboidratos/química , Etanol/química , Etanol/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Tecnologia de Alimentos/métodos , Glucuronatos/química , Glucuronatos/metabolismo , Lignina/química , Lignina/metabolismo , Metano/química , Metano/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Sasa/química
17.
Int J Syst Evol Microbiol ; 57(Pt 12): 2964-2969, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18048758

RESUMO

A thermophilic, methylotrophic methanogen, strain ZC-1(T), was isolated from the Shengli oilfield, China. Cells of strain ZC-1(T) were motile cocci, 0.7-1.0 microm in diameter and always occurred in clusters of two to four cells. Lysis-susceptibility experiments and analysis of transmission electron micrographs of strain ZC-1(T) suggested the presence of a proteinaceous cell wall. Strain ZC-1(T) used methanol, methylamine and trimethylamine as substrates for methanogenesis. Optimal growth, with a doubling time of around 5 h, occurred at pH 6.0-6.5, 65 degrees C, 0.3-0.5 M NaCl and 0.05-0.20 M MgCl(2). The DNA G+C content of this organism was 56 mol%. Analysis of 16S rRNA gene sequence and the inferred amino acid sequence of the mcrA gene of strain ZC-1(T) indicated that it is related specifically to members of the family Methanosaetaceae (90.6 and 76.6 % sequence similarity, respectively). However, strain ZC-1(T) failed to grow with acetate as substrate for methanogenesis, which is a special characteristic of the family Methanosaetaceae. Based on these phenotypic and phylogenic characteristics, strain ZC-1(T) is proposed to represent a novel genus and species, for which the name Methermicoccus shengliensis gen. nov., sp. nov. is proposed. The type strain is ZC-1(T) (=CGMCC 1.5056(T)=DSM 18856(T)). Methermicoccaceae fam. nov. is also proposed.


Assuntos
Archaea/classificação , Archaea/isolamento & purificação , Metano/biossíntese , Metanol/metabolismo , Microbiologia da Água , Ácido Acético/metabolismo , Archaea/genética , Archaea/metabolismo , Composição de Bases , China , DNA Arqueal/química , DNA Arqueal/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Concentração de Íons de Hidrogênio , Cloreto de Magnésio/metabolismo , Methanosarcinales/genética , Metilaminas/metabolismo , Microscopia Eletrônica , Microscopia de Contraste de Fase , Dados de Sequência Molecular , Petróleo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Cloreto de Sódio/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...