Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38699359

RESUMO

The nasopharynx and its microbiota are implicated in respiratory health and disease. The interplay between viral infection and the nasopharyngeal microbiome is an area of increased interest and of clinical relevance. The impact of SARS-CoV-2, the etiological agent of the Coronavirus Disease 2019 (COVID-19) pandemic, on the nasopharyngeal microbiome, particularly among individuals living with HIV, is not fully characterized. Here we describe the nasopharyngeal microbiome before, during and after SARS-CoV-2 infection in a longitudinal cohort of Kenyan women (21 living with HIV and 14 HIV-uninfected) and their infants (18 HIV-exposed, uninfected and 18 HIV-unexposed, uninfected), followed between September 2021 through March 2022. We show using genomic epidemiology that mother and infant dyads were infected with the same strain of the SARS-CoV-2 Omicron variant that spread rapidly across Kenya. Additionally, we used metagenomic sequencing to characterize the nasopharyngeal microbiome of 20 women and infants infected with SARS-CoV-2, 6 infants negative for SARS-CoV-2 but experiencing respiratory symptoms, and 34 timepoint matched SARS-CoV-2 negative mothers and infants. Since individuals were sampled longitudinally before and after SARS-CoV-2 infection, we could characterize the short- and long-term impact of SARS-CoV-2 infection on the nasopharyngeal microbiome. We found that mothers and infants had significantly different microbiome composition and bacterial load (p-values <.0001). However, in both mothers and infants, the nasopharyngeal microbiome did not differ before and after SARS-CoV-2 infection, regardless of HIV-exposure status. Our results indicate that the nasopharyngeal microbiome is resilient to SARS-CoV-2 infection and was not significantly modified by HIV.

2.
medRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38586006

RESUMO

Areas of dense population congregation are prone to experience respiratory virus outbreaks. We monitored wastewater and clinic patients for the presence of respiratory viruses on a large, public university campus. Campus sewer systems were monitored in 16 locations for the presence of viruses using next generation sequencing over 22 weeks in 2023. During this period, we detected a surge in human adenovirus (HAdV) levels in wastewater. Hence, we initiated clinical surveillance at an on-campus clinic from patients presenting with acute respiratory infection. From whole genome sequencing of 123 throat and/or nasal swabs collected, we identified an outbreak of HAdV, specifically of HAdV-E4 and HAdV-B7 genotypes overlapping in time. The temporal dynamics and proportions of HAdV genotypes found in wastewater were corroborated in clinical infections. We tracked specific single nucleotide polymorphisms (SNPs) found in clinical virus sequences and showed that they arose in wastewater signals concordant with the time of clinical presentation, linking community transmission of HAdV to the outbreak. This study demonstrates how wastewater-based epidemiology can be integrated with surveillance at ambulatory healthcare settings to monitor areas prone to respiratory virus outbreaks and provide public health guidance.

3.
Microbiol Spectr ; 11(4): e0525822, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37306573

RESUMO

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, mutations arise that will allow the virus to evade immune defenses and therapeutics. Assays that can identify these mutations can be used to guide personalized patient treatment plans. Digital PCR (dPCR) is a fast and reliable complement to whole-genome sequencing that can be used to discriminate single nucleotide polymorphisms (SNPs) in template molecules. Here, we developed a panel of SARS-CoV-2 dPCR assays and demonstrate its applications for typing variant lineages and therapeutic monoclonal antibody resistance. We first designed multiplexed dPCR assays for SNPs located at residue 3395 in the orf1ab gene that differentiate the Delta, Omicron BA.1, and Omicron BA.2 lineages. We demonstrate their effectiveness on 596 clinical saliva specimens that were sequence verified using Illumina whole-genome sequencing. Next, we developed dPCR assays for spike mutations R346T, K444T, N460K, F486V, and F486S, which are associated with host immune evasion and reduced therapeutic monoclonal antibody efficacy. We demonstrate that these assays can be run individually or multiplexed to detect the presence of up to 4 SNPs in a single assay. We perform these dPCR assays on 81 clinical saliva SARS-CoV-2-positive specimens and properly identify mutations in Omicron subvariants BA.2.75.2, BM.1.1, BN.1, BF.7, BQ.1, BQ.1.1, and XBB. Thus, dPCR could serve as a useful tool to determine if clinical specimens contain therapeutically relevant mutations and inform patient treatment. IMPORTANCE Spike mutations in the SARS-CoV-2 genome confer resistance to therapeutic monoclonal antibodies. Authorization for treatment options is typically guided by general trends of variant prevalence. For example, bebtelovimab is no longer authorized for emergency use in the United States due to the increased prevalence of antibody-resistant BQ.1, BQ.1.1, and XBB Omicron subvariants. However, this blanket approach limits access to life-saving treatment options to patients who are otherwise infected with susceptible variants. Digital PCR assays targeting specific mutations can complement whole-genome sequencing approaches to genotype the virus. In this study, we demonstrate the proof of concept that dPCR can be used to type lineage defining and monoclonal antibody resistance-associated mutations in saliva specimens. These findings show that digital PCR could be used as a personalized diagnostic tool to guide individual patient treatment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Mutação , Reação em Cadeia da Polimerase Multiplex , Anticorpos Monoclonais , Teste para COVID-19
4.
mBio ; 14(1): e0310122, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36622143

RESUMO

The adaptive evolution of SARS-CoV-2 variants is driven by selection for increased viral fitness in transmissibility and immune evasion. Understanding the dynamics of how an emergent variant sweeps across populations can better inform public health response preparedness for future variants. Here, we investigated the state-level genomic epidemiology of SARS-CoV-2 through baseline genomic sequencing surveillance of 27,071 public testing specimens and 1,125 hospital inpatient specimens diagnosed between November 1, 2021, and January 31, 2022, in Arizona. We found that the Omicron variant rapidly displaced Delta variant in December 2021, leading to an "Omicron surge" of COVID-19 cases in early 2022. Wastewater sequencing surveillance of 370 samples supported the synchronous sweep of Omicron in the community. Hospital inpatient COVID-19 cases of Omicron variant presented to three major hospitals 10.51 days after its detection from public clinical testing. Nonsynonymous mutations in nsp3, nsp12, and nsp13 genes were significantly associated with Omicron hospital cases compared to community cases. To model SARS-CoV-2 transmissions across the state population, we developed a scalable sequence network methodology and showed that the Omicron variant spread through intracounty and intercounty transmissions. Finally, we demonstrated that the temporal emergence of Omicron BA.1 to become the dominant variant (17.02 days) was 2.3 times faster than the prior Delta variant (40.70 days) or subsequent Omicron sublineages BA.2 (39.65 days) and BA.5 (35.38 days). Our results demonstrate the uniquely rapid sweep of Omicron BA.1. These findings highlight how integrated public health surveillance can be used to enhance preparedness and response to future variants. IMPORTANCE SARS-CoV-2 continues to evolve new variants throughout the pandemic. However, the temporal dynamics of how SARS-CoV-2 variants emerge to become the dominant circulating variant is not precisely known. Genomic sequencing surveillance offers unique insights into how SARS-CoV-2 spreads in communities and the lead-up to hospital cases during a surge. Specifically, baseline sequencing surveillance through random selection of positive diagnostic specimens provides a representative outlook of the virus lineages circulating in a geographic region. Here, we investigated the emergence of the Omicron variant of concern in Arizona by leveraging baseline genomic sequence surveillance of public clinical testing, hospitals, and community wastewater. We tracked the spread and evolution of the Omicron variant as it first emerged in the general public, and its rapid shift in hospital admissions in the state health system. This study demonstrates the timescale of public health preparedness needed to respond to an antigenic shift in SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Arizona/epidemiologia , SARS-CoV-2/genética , COVID-19/epidemiologia , Águas Residuárias , Hospitais , Teste para COVID-19
5.
PLoS Comput Biol ; 17(10): e1009463, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710081

RESUMO

Experimental data about gene functions curated from the primary literature have enormous value for research scientists in understanding biology. Using the Gene Ontology (GO), manual curation by experts has provided an important resource for studying gene function, especially within model organisms. Unprecedented expansion of the scientific literature and validation of the predicted proteins have increased both data value and the challenges of keeping pace. Capturing literature-based functional annotations is limited by the ability of biocurators to handle the massive and rapidly growing scientific literature. Within the community-oriented wiki framework for GO annotation called the Gene Ontology Normal Usage Tracking System (GONUTS), we describe an approach to expand biocuration through crowdsourcing with undergraduates. This multiplies the number of high-quality annotations in international databases, enriches our coverage of the literature on normal gene function, and pushes the field in new directions. From an intercollegiate competition judged by experienced biocurators, Community Assessment of Community Annotation with Ontologies (CACAO), we have contributed nearly 5,000 literature-based annotations. Many of those annotations are to organisms not currently well-represented within GO. Over a 10-year history, our community contributors have spurred changes to the ontology not traditionally covered by professional biocurators. The CACAO principle of relying on community members to participate in and shape the future of biocuration in GO is a powerful and scalable model used to promote the scientific enterprise. It also provides undergraduate students with a unique and enriching introduction to critical reading of primary literature and acquisition of marketable skills.


Assuntos
Crowdsourcing/métodos , Ontologia Genética , Anotação de Sequência Molecular/métodos , Biologia Computacional , Bases de Dados Genéticas , Humanos , Proteínas/genética , Proteínas/fisiologia
6.
Mol Cell ; 81(10): 2201-2215.e9, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34019789

RESUMO

The multi-subunit bacterial RNA polymerase (RNAP) and its associated regulators carry out transcription and integrate myriad regulatory signals. Numerous studies have interrogated RNAP mechanism, and RNAP mutations drive Escherichia coli adaptation to many health- and industry-relevant environments, yet a paucity of systematic analyses hampers our understanding of the fitness trade-offs from altering RNAP function. Here, we conduct a chemical-genetic analysis of a library of RNAP mutants. We discover phenotypes for non-essential insertions, show that clustering mutant phenotypes increases their predictive power for drawing functional inferences, and demonstrate that some RNA polymerase mutants both decrease average cell length and prevent killing by cell-wall targeting antibiotics. Our findings demonstrate that RNAP chemical-genetic interactions provide a general platform for interrogating structure-function relationships in vivo and for identifying physiological trade-offs of mutations, including those relevant for disease and biotechnology. This strategy should have broad utility for illuminating the role of other important protein complexes.


Assuntos
RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Mutação/genética , Andinocilina/farmacologia , Proteínas de Bactérias/metabolismo , Morte Celular/efeitos dos fármacos , Cromossomos Bacterianos/genética , Citoproteção/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Mutagênese Insercional/genética , Peptídeos/metabolismo , Fenótipo , Relação Estrutura-Atividade , Transcrição Gênica , Uridina Difosfato Glucose/metabolismo
7.
G3 (Bethesda) ; 11(1)2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33561236

RESUMO

Despite the demonstrated success of genome-wide genetic screens and chemical genomics studies at predicting functions for genes of unknown function or predicting new functions for well-characterized genes, their potential to provide insights into gene function has not been fully explored. We systematically reanalyzed a published high-throughput phenotypic dataset for the model Gram-negative bacterium Escherichia coli K-12. The availability of high-quality annotation sets allowed us to compare the power of different metrics for measuring phenotypic profile similarity to correctly infer gene function. We conclude that there is no single best method; the three metrics tested gave comparable results for most gene pairs. We also assessed how converting quantitative phenotypes to discrete, qualitative phenotypes affected the association between phenotype and function. Our results indicate that this approach may allow phenotypic data from different studies to be combined to produce a larger dataset that may reveal functional connections between genes not detected in individual studies.


Assuntos
Escherichia coli K12 , Escherichia coli , Genômica , Fenótipo
8.
PLoS Comput Biol ; 16(11): e1008214, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137082

RESUMO

In the modern genomic era, scientists without extensive bioinformatic training need to apply high-power computational analyses to critical tasks like phage genome annotation. At the Center for Phage Technology (CPT), we developed a suite of phage-oriented tools housed in open, user-friendly web-based interfaces. A Galaxy platform conducts computationally intensive analyses and Apollo, a collaborative genome annotation editor, visualizes the results of these analyses. The collection includes open source applications such as the BLAST+ suite, InterProScan, and several gene callers, as well as unique tools developed at the CPT that allow maximum user flexibility. We describe in detail programs for finding Shine-Dalgarno sequences, resources used for confident identification of lysis genes such as spanins, and methods used for identifying interrupted genes that contain frameshifts or introns. At the CPT, genome annotation is separated into two robust segments that are facilitated through the automated execution of many tools chained together in an operation called a workflow. First, the structural annotation workflow results in gene and other feature calls. This is followed by a functional annotation workflow that combines sequence comparisons and conserved domain searching, which is contextualized to allow integrated evidence assessment in functional prediction. Finally, we describe a workflow used for comparative genomics. Using this multi-purpose platform enables researchers to easily and accurately annotate an entire phage genome. The portal can be accessed at https://cpt.tamu.edu/galaxy-pub with accompanying user training material.


Assuntos
Bacteriófagos/genética , Genoma Viral , Anotação de Sequência Molecular , Interface Usuário-Computador , Bases de Dados Genéticas , Internet , Controle de Qualidade
9.
G3 (Bethesda) ; 10(7): 2345-2351, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32376676

RESUMO

A long-standing effort in biology is to precisely define and group phenotypes that characterize a biological process, and the genes that underpin them. In Saccharomyces cerevisiae and other organisms, functional screens have generated rich lists of phenotypes associated with individual genes. However, it is often challenging to identify sets of phenotypes and genes that are most closely associated with a given biological process. Here, we focused on the 166 phenotypes arising from loss-of-function and the 86 phenotypes from gain-of-function mutations in 571 genes currently assigned to cell cycle-related ontologies in S. cerevisiae To reduce this complexity, we applied unbiased, computational approaches of correspondence analysis to identify a minimum set of phenotypic variables that accounts for as much of the variability in the data as possible. Loss-of-function phenotypes can be reduced to 20 dimensions, while gain-of-function ones to 14 dimensions. We also pinpoint the contributions of phenotypes and genes in each set. The approach we describe not only simplifies the categorization of phenotypes associated with cell cycle progression but might also potentially serve as a discovery tool for gene function.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ciclo Celular/genética , Biologia Computacional , Genes cdc , Fenótipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
J Biomed Semantics ; 10(1): 13, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307550

RESUMO

BACKGROUND: Microbial genetics has formed a foundation for understanding many aspects of biology. Systematic annotation that supports computational data mining should reveal further insights for microbes, microbiomes, and conserved functions beyond microbes. The Ontology of Microbial Phenotypes (OMP) was created to support such annotation. RESULTS: We define standards for an OMP-based annotation framework that supports the capture of a variety of phenotypes and provides flexibility for different levels of detail based on a combination of pre- and post-composition using OMP and other Open Biomedical Ontology (OBO) projects. A system for entering and viewing OMP annotations has been added to our online, public, web-based data portal. CONCLUSIONS: The annotation framework described here is ready to support projects to capture phenotypes from the experimental literature for a variety of microbes. Defining the OMP annotation standard should support the development of new software tools for data mining and analysis in comparative phenomics.


Assuntos
Ontologias Biológicas , Curadoria de Dados/métodos , Microbiologia , Fenótipo , Metadados
11.
Cell ; 176(1-2): 127-143.e24, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30633903

RESUMO

DNA damage provokes mutations and cancer and results from external carcinogens or endogenous cellular processes. However, the intrinsic instigators of endogenous DNA damage are poorly understood. Here, we identify proteins that promote endogenous DNA damage when overproduced: the DNA "damage-up" proteins (DDPs). We discover a large network of DDPs in Escherichia coli and deconvolute them into six function clusters, demonstrating DDP mechanisms in three: reactive oxygen increase by transmembrane transporters, chromosome loss by replisome binding, and replication stalling by transcription factors. Their 284 human homologs are over-represented among known cancer drivers, and their RNAs in tumors predict heavy mutagenesis and a poor prognosis. Half of the tested human homologs promote DNA damage and mutation when overproduced in human cells, with DNA damage-elevating mechanisms like those in E. coli. Our work identifies networks of DDPs that provoke endogenous DNA damage and may reveal DNA damage-associated functions of many human known and newly implicated cancer-promoting proteins.


Assuntos
Dano ao DNA/genética , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Proteínas de Bactérias/metabolismo , Instabilidade Cromossômica/fisiologia , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Instabilidade Genômica , Humanos , Proteínas de Membrana Transportadoras/fisiologia , Mutagênese , Mutação , Fatores de Transcrição/metabolismo
12.
Nucleic Acids Res ; 47(D1): D1186-D1194, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30407590

RESUMO

The Evidence and Conclusion Ontology (ECO) contains terms (classes) that describe types of evidence and assertion methods. ECO terms are used in the process of biocuration to capture the evidence that supports biological assertions (e.g. gene product X has function Y as supported by evidence Z). Capture of this information allows tracking of annotation provenance, establishment of quality control measures and query of evidence. ECO contains over 1500 terms and is in use by many leading biological resources including the Gene Ontology, UniProt and several model organism databases. ECO is continually being expanded and revised based on the needs of the biocuration community. The ontology is freely available for download from GitHub (https://github.com/evidenceontology/) or the project's website (http://evidenceontology.org/). Users can request new terms or changes to existing terms through the project's GitHub site. ECO is released into the public domain under CC0 1.0 Universal.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Ontologia Genética , Proteínas/genética , Animais , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Proteínas/metabolismo , Análise de Sequência de Proteína , Interface Usuário-Computador
13.
Methods Mol Biol ; 1446: 25-37, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27812933

RESUMO

The Gene Ontology (GO) project is the largest resource for cataloguing gene function. The combination of solid conceptual underpinnings and a practical set of features have made the GO a widely adopted resource in the research community and an essential resource for data analysis. In this chapter, we provide a concise primer for all users of the GO. We briefly introduce the structure of the ontology and explain how to interpret annotations associated with the GO.


Assuntos
Biologia Computacional/métodos , Ontologia Genética , Animais , DNA/genética , Bases de Dados Genéticas , Humanos , Internet , Proteínas/genética , RNA/genética
14.
Methods Mol Biol ; 1446: 245-259, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27812948

RESUMO

The Evidence and Conclusion Ontology (ECO) is a community resource for describing the various types of evidence that are generated during the course of a scientific study and which are typically used to support assertions made by researchers. ECO describes multiple evidence types, including evidence resulting from experimental (i.e., wet lab) techniques, evidence arising from computational methods, statements made by authors (whether or not supported by evidence), and inferences drawn by researchers curating the literature. In addition to summarizing the evidence that supports a particular assertion, ECO also offers a means to document whether a computer or a human performed the process of making the annotation. Incorporating ECO into an annotation system makes it possible to leverage the structure of the ontology such that associated data can be grouped hierarchically, users can select data associated with particular evidence types, and quality control pipelines can be optimized. Today, over 30 resources, including the Gene Ontology, use the Evidence and Conclusion Ontology to represent both evidence and how annotations are made.


Assuntos
Ontologia Genética , Anotação de Sequência Molecular/métodos , Animais , Biologia Computacional/métodos , Curadoria de Dados/métodos , Bases de Dados Genéticas , Humanos , Internet , Software
15.
Nucleic Acids Res ; 44(5): e41, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26578563

RESUMO

With the wide availability of whole-genome sequencing (WGS), genetic mapping has become the rate-limiting step, inhibiting unbiased forward genetics in even the most tractable model organisms. We introduce a rapid deconvolution resource and method for untagged causative mutations after mutagenesis, screens, and WGS in Escherichia coli. We created Deconvoluter-ordered libraries with selectable insertions every 50 kb in the E. coli genome. The Deconvoluter method uses these for replacement of untagged mutations in the genome using a phage-P1-based gene-replacement strategy. We validate the Deconvoluter resource by deconvolution of 17 of 17 phenotype-altering mutations from a screen of N-ethyl-N-nitrosourea-induced mutants. The Deconvoluter resource permits rapid unbiased screens and gene/function identification and will enable exploration of functions of essential genes and undiscovered genes/sites/alleles not represented in existing deletion collections. This resource for unbiased forward-genetic screens with mapping-by-sequencing ('forward genomics') demonstrates a strategy that could similarly enable rapid screens in many other microbes.


Assuntos
Escherichia coli/genética , Biblioteca Gênica , Genoma Bacteriano , Genômica/métodos , Mutagênese Insercional/métodos , Mutação , Algoritmos , Bacteriófago P1/genética , Escherichia coli/efeitos dos fármacos , Etilnitrosoureia/farmacologia , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
16.
BMC Microbiol ; 14: 294, 2014 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-25433798

RESUMO

BACKGROUND: Phenotypic data are routinely used to elucidate gene function in organisms amenable to genetic manipulation. However, previous to this work, there was no generalizable system in place for the structured storage and retrieval of phenotypic information for bacteria. RESULTS: The Ontology of Microbial Phenotypes (OMP) has been created to standardize the capture of such phenotypic information from microbes. OMP has been built on the foundations of the Basic Formal Ontology and the Phenotype and Trait Ontology. Terms have logical definitions that can facilitate computational searching of phenotypes and their associated genes. OMP can be accessed via a wiki page as well as downloaded from SourceForge. Initial annotations with OMP are being made for Escherichia coli using a wiki-based annotation capture system. New OMP terms are being concurrently developed as annotation proceeds. CONCLUSIONS: We anticipate that diverse groups studying microbial genetics and associated phenotypes will employ OMP for standardizing microbial phenotype annotation, much as the Gene Ontology has standardized gene product annotation. The resulting OMP resource and associated annotations will facilitate prediction of phenotypes for unknown genes and result in new experimental characterization of phenotypes and functions.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biologia Computacional/métodos , Software , Fenótipo
17.
Nucleic Acids Res ; 42(Database issue): D677-84, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24285306

RESUMO

PortEco (http://porteco.org) aims to collect, curate and provide data and analysis tools to support basic biological research in Escherichia coli (and eventually other bacterial systems). PortEco is implemented as a 'virtual' model organism database that provides a single unified interface to the user, while integrating information from a variety of sources. The main focus of PortEco is to enable broad use of the growing number of high-throughput experiments available for E. coli, and to leverage community annotation through the EcoliWiki and GONUTS systems. Currently, PortEco includes curated data from hundreds of genome-wide RNA expression studies, from high-throughput phenotyping of single-gene knockouts under hundreds of annotated conditions, from chromatin immunoprecipitation experiments for tens of different DNA-binding factors and from ribosome profiling experiments that yield insights into protein expression. Conditions have been annotated with a consistent vocabulary, and data have been consistently normalized to enable users to find, compare and interpret relevant experiments. PortEco includes tools for data analysis, including clustering, enrichment analysis and exploration via genome browsers. PortEco search and data analysis tools are extensively linked to the curated gene, metabolic pathway and regulation content at its sister site, EcoCyc.


Assuntos
Bases de Dados Genéticas , Escherichia coli/genética , Alelos , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Genes Bacterianos , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Internet , Fenótipo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Software
18.
Virology ; 434(2): 175-80, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23084289

RESUMO

The revolution in virus genome sequencing promises to effectively map the extant biological universe and reveal fundamental relationships between viral biology, genome structure, and evolution. Indeed, microbial virus genomes include large numbers of conserved coding sequences of unknown function as well as unique gene combinations, implying that that these viruses will be a significant source of novel protein biochemistry and genome architecture. Yet, making sense of the approaching phalanx of A's, G's, T's, and C's stretching across the genome sequencing horizon will require innovation and an unprecedented coordination of annotation efforts among stakeholders.


Assuntos
Biologia Computacional/métodos , Genômica/métodos , Vírus/classificação , Vírus/genética , Bacteriófagos/classificação , Bacteriófagos/genética , Evolução Molecular , Genes Virais
19.
Nucleic Acids Res ; 40(Database issue): D1262-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22110029

RESUMO

The Gene Ontology Normal Usage Tracking System (GONUTS) is a community-based browser and usage guide for Gene Ontology (GO) terms and a community system for general GO annotation of proteins. GONUTS uses wiki technology to allow registered users to share and edit notes on the use of each term in GO, and to contribute annotations for specific genes of interest. By providing a site for generation of third-party documentation at the granularity of individual terms, GONUTS complements the official documentation of the Gene Ontology Consortium. To provide examples for community users, GONUTS displays the complete GO annotations from seven model organisms: Saccharomyces cerevisiae, Dictyostelium discoideum, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Mus musculus and Arabidopsis thaliana. To support community annotation, GONUTS allows automated creation of gene pages for gene products in UniProt. GONUTS will improve the consistency of annotation efforts across genome projects, and should be useful in training new annotators and consumers in the production of GO annotations and the use of GO terms. GONUTS can be accessed at http://gowiki.tamu.edu. The source code for generating the content of GONUTS is available upon request.


Assuntos
Bases de Dados de Ácidos Nucleicos , Anotação de Sequência Molecular , Proteínas/genética , Software , Vocabulário Controlado , Animais , Genes , Internet , Camundongos
20.
Nucleic Acids Res ; 40(Database issue): D1270-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22064863

RESUMO

EcoliWiki is the community annotation component of the PortEco (http://porteco.org; formerly EcoliHub) project, an online data resource that integrates information on laboratory strains of Escherichia coli, its phages, plasmids and mobile genetic elements. As one of the early adopters of the wiki approach to model organism databases, EcoliWiki was designed to not only facilitate community-driven sharing of biological knowledge about E. coli as a model organism, but also to be interoperable with other data resources. EcoliWiki content currently covers genes from five laboratory E. coli strains, 21 bacteriophage genomes, F plasmid and eight transposons. EcoliWiki integrates the Mediawiki wiki platform with other open-source software tools and in-house software development to extend how wikis can be used for model organism databases. EcoliWiki can be accessed online at http://ecoliwiki.net.


Assuntos
Bases de Dados Genéticas , Escherichia coli/genética , Colífagos/genética , Genes Bacterianos , Internet , Sequências Repetitivas Dispersas , Anotação de Sequência Molecular , Plasmídeos/genética , Software , Integração de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...