Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049287

RESUMO

The environmental problems in the world are attracting increasing amounts of attention, and heavy metal pollution in the water has become one of the focuses of the ecological environment. Molybdenum disulfide (MoS2) has excellent adsorption performance because of its extremely high specific surface area and unique active site structure, which has attracted an increasing amount of attention in the field of heavy metal disposal in various types of water. In this paper, two sorts of MoS2 nanoparticles, spherical and lamellar, were synthesized by different chemical methods. Their morphology and structure were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and a Raman spectrometer. The adsorption properties of two sorts of MoS2 nanoparticles for copper (Ⅱ) ions in water were investigated by changing the pH value, adsorption time, initial concentration of solution, adsorption temperature, etc. Finally, the adsorption mechanism was analyzed by kinetic, isothermal, and thermodynamic models. The results show that two microstructures of MoS2 nanoparticles can be used as efficient adsorption materials for removing heavy metal ions from water, although there are differences in adsorption capacity between them, which expands the theoretical basis of heavy metal adsorption in a water environment.

2.
Nanomaterials (Basel) ; 8(2)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373531

RESUMO

High-performance poly(1,4-butylene terephthalate) (PBT) nanocomposites have been developed via the consideration of phosphorus-containing agents and amino-carbon nanotube (A-CNT). One-pot functionalization method has been adopted to prepare functionalized CNTs via the reaction between A-CNT and different oxidation state phosphorus-containing agents, including chlorodiphenylphosphine (DPP-Cl), diphenylphosphinic chloride (DPP(O)-Cl), and diphenyl phosphoryl chloride (DPP(O3)-Cl). These functionalized CNTs, DPP(Ox)-A-CNTs (x = 0, 1, 3), were, respectively, mixed with PBT to obtain the CNT-based polymer nanocomposites through a melt blending method. Scanning electron microscope observations demonstrated that DPP(Ox)-A-CNT nanoadditives were homogeneously distributed within PBT matrix compared to A-CNT. The incorporation of DPP(Ox)-A-CNT improved the thermal stability of PBT. Moreover, PBT/DPP(O3)-A-CNT showed the highest crystallization temperature and tensile strength, due to the superior dispersion and interfacial interactions between DPP(O3)-A-CNT and PBT. PBT/DPP(O)-A-CNT exhibited the best flame retardancy resulting from the excellent carbonization effect. The radicals generated from decomposed polymer were effectively trapped by DPP(O)-A-CNT, leading to the reduction of heat release rate, smoke production rate, carbon dioxide and carbon monoxide release during cone calorimeter tests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...