Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Immunol Lett ; 267: 106853, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513836

RESUMO

BACKGROUND: Allergic asthma is a heterogeneous disease and new strategies are needed to prevent or treat this disease. Studies have shown that probiotic interventions are effective in preventing asthma. Here, we investigated the impact of Saccharomyces boulardii (S. boulardii) on ovalbumin (OVA)-induced allergic asthma in mice, as well as the underlying mechanisms. METHODS: First, we constructed a mouse asthma model using OVA and given S. boulardii intervention. Next, we measured N6-methyladenosine (m6A) levels in lung injury tissues. 16 s rRNA was employed to identify different gut microbiota in fecal samples. The analysis of differential metabolites in feces was performed by non-targeted metabolomics. Pearson correlation coefficient was utilized to analyze correlation between gut microbiota, metabolites and methyltransferase-like 3 (METTL3). Finally, we collected mouse feces treated by OVA and S. boulardii intervention for fecal microbiota transplantation (FMT) and interfered with METTL3. RESULTS: S. boulardii improved inflammation and oxidative stress and alleviated lung damage in asthmatic mice. In addition, S. boulardii regulated m6A modification levels in asthmatic mice. 16 s rRNA sequencing showed that S. boulardii remodeled gut microbiota homeostasis in asthmatic mice. Non-targeted metabolomics analysis showed S. boulardii restored metabolic homeostasis in asthmatic mice. There was a correlation between gut microbiota, differential metabolites, and METTL3 analyzed by Pearson correlation. Additionally, through FMT and interference of METTL3, we found that gut microbiota mediated the up-regulation of METTL3 by S. boulardii improved inflammation and oxidative stress in asthmatic mice, and alleviated lung injury. CONCLUSIONS: S. boulardii alleviated allergic asthma by restoring gut microbiota and metabolic homeostasis via up-regulation of METTL3 in an m6A-dependent manner.

2.
Mol Biotechnol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456963

RESUMO

Precise quantification of human cells in preclinical animal models by a sensitive and specific approach is warranted. The probe-based quantitative PCR (qPCR) assay as a sensitive and swift approach is suitable for the quantification of human cells by targeting human-specific DNA sequences. In this study, we developed an efficient qPCR assay targeting human-specific DNA in ST6GALNAC3 (termed ST6GAL-qPCR) for the quantification of human cells in preclinical animal models. ST6GAL-qPCR probe was synthesized with FAM and non-fluorescent quencher-minor groove binder conjugated to the 5' and 3' end of the probe, respectively. Genomic DNA from human, rhesus monkeys, cynomolgus monkeys, New Zealand White rabbits, SD rats, C57BL/6, and BALB/c mice were utilized for analyzing the specificity and sensitivity of the ST6GAL-qPCR assay. The ST6GAL-qPCR assay targeted human-specific DNA was cloned to pUCM-T vector and released by EcoR I/Hind III digestion for generating a calibration curve. Cell mixing experiment was performed to validate the ST6GAL-qPCR assay by analysis of 0.1%, 0.01%, and 0.001% of human leukocytes mixed with murine thymocytes. The ST6GAL-qPCR assay detected human DNA rather than DNA from the tested animal species. The amplification efficiency of the ST6GAL-qPCR assay was 93% and the linearity of calibration curve was R2 = 0.999. The ST6GAL-qPCR assay detected as low as 5 copies of human-specific DNA and is efficient to specially amplify as low as 30-pg human DNA in the presence of 1 µg of DNA from the tested species, respectively. The ST6GAL-qPCR assay was able to quantify as low as 0.01% of human leukocytes within murine thymocytes. This ST6GAL-qPCR assay can be used as an efficient approach for the quantification of human cells in preclinical animal models.

3.
Adv Sci (Weinh) ; 11(14): e2307749, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311582

RESUMO

The heart primarily derives its energy through lipid oxidation. In cardiomyocytes, lipids are stored in lipid droplets (LDs) and are utilized in mitochondria, although the structural and functional connections between these two organelles remain largely unknown. In this study, visible evidence have presented indicating that a complex is formed at the mitochondria-LD membrane contact (MLC) site, involving mitochondrion-localized Mfn2 and LD-localized Hsc70. This complex serves to tether mitochondria to LDs, facilitating the transfer of fatty acids (FAs) from LDs to mitochondria for ß-oxidation. Reduction of Mfn2 induced by lipid overload inhibits MLC, hinders FA transfer, and results in lipid accumulation. Restoring Mfn2 reinstates MLC, alleviating myocardial lipotoxicity under lipid overload conditions both in-vivo and in-vitro. Additionally, prolonged lipid overload induces Mfn2 degradation through the ubiquitin-proteasome pathway, following Mfn2 acetylation at the K243 site. This leads to the transition from adaptive lipid utilization to maladaptive lipotoxicity. The experimental findings are supported by clinical data from patients with obesity and age-matched non-obese individuals. These translational results make a significant contribution to the molecular understanding of MLC in the heart, and offer new insights into its role in myocardial lipotoxicity.


Assuntos
GTP Fosfo-Hidrolases , Proteínas de Choque Térmico HSC70 , Gotículas Lipídicas , Metabolismo dos Lipídeos , Miócitos Cardíacos , Humanos , Ácidos Graxos/metabolismo , Hidrolases/metabolismo , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Animais , Camundongos , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Coração , Miócitos Cardíacos/metabolismo
4.
MedComm (2020) ; 5(3): e503, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38420163

RESUMO

Multiple molecular mechanisms are involved in the development of heart failure (HF) after myocardial infarction (MI). However, interventions targeting these pathological processes alone remain clinically ineffective. Therefore, it is essential to identify new therapeutic targets for alleviating cardiac dysfunction after MI. Here, gain- and loss-of-function approaches were used to investigate the role of reticulon 3 (RTN3) in HF after MI. We found that RTN3 was elevated in the myocardium of patients with HF and mice with MI. Cardiomyocyte-specific RTN3 overexpression decreased systolic function in mice under physiological conditions and exacerbated the development of HF induced by MI. Conversely, RTN3 knockout alleviated cardiac dysfunction after MI. Mechanistically, RTN3 bound and mediated heat shock protein beta-1 (HSPB1) translocation from the cytosol to the endoplasmic reticulum. The reduction of cytosolic HSPB1 was responsible for the elevation of TLR4, which impaired mitochondrial function and promoted inflammation through toll-like receptor 4 (TLR4)/peroxisome proliferator-activated receptor gamma coactivator-1 alpha(PGC-1α) and TLR4/Nuclear factor-kappa B(NFκB) pathways, respectively. Furthermore, the HSPB1 inhibitor reversed the protective effect of RTN3 knockout on MI. Additionally, elevated plasma RTN3 level is associated with decreased cardiac function in patients with acute MI. This study identified RTN3 as a critical driver of HF after MI and suggests targeting RTN3 as a promising therapeutic strategy for MI and related cardiovascular diseases.

5.
Cell Death Differ ; 31(3): 292-308, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38017147

RESUMO

Lipid droplet (LD) accumulation is a notable feature of obesity-induced cardiomyopathy, while underlying mechanism remains poorly understood. Here we show that mice fed with high-fat diet (HFD) exhibited significantly increase in cardiac LD and RTN3 expression, accompanied by cardiac function impairment. Multiple loss- and gain-of function experiments indicate that RTN3 is critical to HFD-induced cardiac LD accumulation. Mechanistically, RTN3 directly bonds with fatty acid binding protein 5 (FABP5) to facilitate the directed transport of fatty acids to endoplasmic reticulum, thereby promoting LD biogenesis in a diacylglycerol acyltransferase 2 dependent way. Moreover, lipid overload-induced RTN3 upregulation is due to increased expression of CCAAT/enhancer binding protein α (C/EBPα), which positively regulates RTN3 transcription by binding to its promoter region. Notably, above findings were verified in the myocardium of obese patients. Our findings suggest that manipulating LD biogenesis by modulating RTN3 may be a potential strategy for treating cardiac dysfunction in obese patients.


Assuntos
Cardiomiopatias , Gotículas Lipídicas , Animais , Camundongos , Proteínas de Transporte/metabolismo , Dieta Hiperlipídica , Proteínas de Ligação a Ácido Graxo/metabolismo , Coração , Gotículas Lipídicas/metabolismo , Lipídeos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Obesidade/metabolismo
6.
Mol Biol Rep ; 50(11): 9229-9237, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37805662

RESUMO

BACKGROUND: Precise quantification of grafted human cells in preclinical animal models such as non-human primates, rodents and rabbits is needed for the evaluations of the safety and efficacy of cell therapy. Quantitative PCR (qPCR) as a swift, sensitive and powerful assay is suitable for human cell quantification. However, it is a formidable challenge due to that the genome of non-human primates share more than 95% of similarity as human. METHODS: In the present study, we developed a probe-based quantitative PCR (qPCR) assay for the quantification of human cells in preclinical animal models via targeting human specific DNA in the intron of BRCA1 (termed BRCA1-qPCR). The 5' and 3' end of BRCA1-qPCR probe was conjugated with FAM and non-fluorescent quencher-minor groove binder (NFQ-MGB), respectively. 1 µg of genomic DNA from human and preclinical animal models including rhesus monkeys, cynomolgus monkeys, New Zealand white rabbits, SD rats, C57BL/6 and BALB/c mice were used for determining the specificity and sensitivity of the BRCA1-qPCR assay. A calibration curve was generated by BRCA1-qPCR analysis of linearized plasmid containing targeted human specific DNA in BRCA1. The BRCA1-qPCR assay was validated by analysis of 0.003%, 0.03% and 0.3% of human leukocytes mixed within murine leukocytes. RESULTS: The BRCA1-qPCR assay detected human DNA rather than DNA from tested species. The amplification efficiency of the BRCA1-qPCR assay was 95.4% and the linearity of the calibration curve was R2 = 0.9997. The BRCA1-qPCR assay detected as low as 5 copies of human specific DNA and is efficient to specially amplify 30 pg human DNA in the presence of 1 µg of genomic DNA from tested species, respectively. The BRCA1-qPCR assay was able to quantify as low as 0.003% of human cells within murine leukocytes. CONCLUSION: The BRCA1-qPCR assay is efficient for the quantification of human cells in preclinical animal models.


Assuntos
DNA , Primatas , Humanos , Animais , Ratos , Camundongos , Coelhos , Íntrons , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase , Modelos Animais , Proteína BRCA1/genética
7.
Nurse Educ Pract ; 73: 103796, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37866273

RESUMO

AIMS: To explore the relationship among a growth mindset, well-being and learning engagement of nursing students and the mediating effect of well-being. BACKGROUND: Reduced well-being and learning burnout are common among nursing students. From the perspective of positive psychology, a positive education can help students obtain well-being, improve their academic performance and be actively involved in learning. The core of positive education is a growth mindset. However, few studies have explored the causal relationship among a growth mindset, learning engagement and well-being. DESIGN: Correlational design based on cross-sectional data from a multicenter survey study. METHODS: A web-based survey was completed by 1065 nursing students from 5 schools in China between August 2022 and December 2022. The Growth Mindset Scale, the PERMA profiler and the Learning Engagement Scale were used to investigate the effect of a growth mindset on learning engagement and the mediating effect of well-being. RESULTS: Both a growth mindset (r = 0.272, p < 0.01) and well-being (r = 0.693, p < 0.01) were positively correlated with learning engagement, and a growth mindset (r = 0.363, p < 0.01) was positively correlated with well-being. Well-being completely mediated the relationship between a growth mindset and learning engagement. CONCLUSIONS: The growth mindset and well-being of nursing students are related to learning engagement. Therefore, schools can change students' thinking mode by carrying out positive education to enable students to acquire the ability to maintain their well-being and to improve their well-being and learning engagement.


Assuntos
Estudantes de Enfermagem , Humanos , Estudantes de Enfermagem/psicologia , Estudos Transversais , Análise de Classes Latentes , Aprendizagem , Instituições Acadêmicas
8.
Acta Parasitol ; 68(4): 820-831, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37821727

RESUMO

PURPOSE: To explore the essential roles of phosphorylation in mediating the proliferation of T. gondii in its cell lytic life. METHODS: We profiled the phosphoproteome data of T. gondii residing in HFF cells for 2 h and 6 h, representing the early- and late-stages of proliferation (ESP and LSP) within its first generation of division. RESULTS: We identified 70 phosphoproteins, among which 8 phosphoproteins were quantified with the phosphorylation level significantly regulated. While only two of the eight phosphoproteins, GRA7 and TGGT1_242070, were significantly down-regulated at the transcriptional level in the group of LSP vs. ESP. Moreover, GO terms correlated with host membrane component were significantly enriched in the category of cellular component, suggesting phosphoprotein played important roles in acquiring essential substance from host cell via manipulating host membrane. Further GO analysis in the categories of molecular function and biological process and pathway analysis revealed that the cellular processes of glucose and lipid metabolism were regulated by T. gondii phosphoproteins such as PMCAA1, LIPIN, Pyk1 and ALD. Additionally, several phosphoproteins were enriched at the central nodes in the protein-protein interaction network, which may have essential roles in T. gondii proliferation including GAP45, MLC1, fructose-1,6-bisphosphate aldolase, GRAs and so on. CONCLUSION: This study revealed the main cellular processes and key phosphoproteins crucial for the intracellular proliferation of T. gondii, which would provide clues to explore the roles of phosphorylation in regulating the development of tachyzoites and new insight into the mechanism of T. gondii development in vitro.


Assuntos
Fenômenos Biológicos , Toxoplasma , Animais , Toxoplasma/fisiologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proliferação de Células
9.
PeerJ Comput Sci ; 9: e1446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705628

RESUMO

Rapid developments in automatic driving technology have given rise to new experiences for passengers. Safety is a main priority in automatic driving. A strong familiarity with road-surface conditions during the day and night is essential to ensuring driving safety. Existing models used for recognizing road-surface conditions lack the required robustness and generalization abilities. Most studies only validated the performance of these models on daylight images. To address this problem, we propose a novel multi-supervised bidirectional fusion network (MBFN) model to detect weather-induced road-surface conditions on the path of automatic vehicles at both daytime and nighttime. We employed ConvNeXt to extract the basic features, which were further processed using a new bidirectional fusion module to create a fused feature. Then, the basic and fused features were concatenated to generate a refined feature with greater discriminative and generalization abilities. Finally, we designed a multi-supervised loss function to train the MBFN model based on the extracted features. Experiments were conducted using two public datasets. The results clearly demonstrated that the MBFN model could classify diverse road-surface conditions, such as dry, wet, and snowy conditions, with a satisfactory accuracy and outperform state-of-the-art baseline models. Notably, the proposed model has multiple variants that could also achieve competitive performances under different road conditions. The code for the MBFN model is shared at https://zenodo.org/badge/latestdoi/607014079.

10.
Clin Cancer Res ; 29(18): 3779-3792, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37439870

RESUMO

PURPOSE: The dynamic interplay between glioblastoma stem cells (GSC) and tumor-associated macrophages (TAM) sculpts the tumor immune microenvironment (TIME) and promotes malignant progression of glioblastoma (GBM). However, the mechanisms underlying this interaction are still incompletely understood. Here, we investigate the role of CXCL8 in the maintenance of the mesenchymal state of GSC populations and reprogramming the TIME to an immunosuppressive state. EXPERIMENTAL DESIGN: We performed an integrative multi-omics analyses of RNA sequencing, GBM mRNA expression datasets, immune signatures, and epigenetic profiling to define the specific genes expressed in the mesenchymal GSC subsets. We then used patient-derived GSCs and a xenograft murine model to investigate the mechanisms of tumor-intrinsic and extrinsic factor to maintain the mesenchymal state of GSCs and induce TAM polarization. RESULTS: We identified that CXCL8 was preferentially expressed and secreted by mesenchymal GSCs and activated PI3K/AKT and NF-κB signaling to maintain GSC proliferation, survival, and self-renewal through a cell-intrinsic mechanism. CXCL8 induced signaling through a CXCR2-JAK2/STAT3 axis in TAMs, which supported an M2-like TAM phenotype through a paracrine, cell-extrinsic pathway. Genetic- and small molecule-based inhibition of these dual complementary signaling cascades in GSCs and TAMs suppressed GBM tumor growth and prolonged survival of orthotopic xenograft-bearing mice. CONCLUSIONS: CXCL8 plays critical roles in maintaining the mesenchymal state of GSCs and M2-like TAM polarization in GBM, highlighting an interplay between cell-autonomous and cell-extrinsic mechanisms. Targeting CXCL8 and its downstream effectors may effectively improve GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/patologia , Macrófagos Associados a Tumor/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células , Microambiente Tumoral/genética
11.
J Neurooncol ; 164(1): 127-139, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37462801

RESUMO

BACKGROUND: Glioma is the most malignant primary brain tumor with a poor survival time. The tumour microenvironment, especially glioma-associated microglia/macrophages (GAMs), plays an important role in the pathogenesis of glioma. Currently, microglia (CD11b+/CD45Low) and macrophages (CD11b+/CD45High) are distinguished as distinct cell types due to their different origins. Moreover, signal-transducing adaptor protein 1 (STAP1) plays a role in tumourigenesis and immune responses. However, to date, no studies have been reported on STAP1 in GAMs. METHODS: The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases were used to investigate the association between STAP1 mRNA levels and clinical parameters (grades, mutations in isocitrate dehydrogenase, and overall survival). RNA-sequencing, qRT-PCR, Western blotting, immunohistochemistry and immunofluorescence analyses were performed to detect the expression level of STAP1 and related proteins. BV-2 cells were used to construct a STAP1-overexpressing cell line. Phagocytosis of BV-2 cells was assessed by flow cytometry and fluorescence microscopy. C57BL/6 mice were used to establish orthotopic and subcutaneous glioma mouse models. Glioma growth was monitored by bioluminescence imaging. RESULTS: STAP1 expression in glioma-associated microglia is positively correlated with the degree of malignancy and poor prognosis of glioma. Moreover, STAP1 may promote M2-like polarisation by increasing ARG1 expression and inhibiting microglial phagocytosis of microglia. Increased ARG1 may be associated with the IL-6/STAT3 pathway. Impaired phagocytosis may be associated with decreased cofilin and filopodia. CONCLUSION: STAP1 is positively associated with the degree of glioma malignancy and may represent a potential novel therapeutic target for glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Camundongos , Animais , Microglia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Glioma/metabolismo , Macrófagos , Neoplasias Encefálicas/metabolismo , Microambiente Tumoral
12.
Cell Rep Med ; 4(3): 100956, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36858042

RESUMO

Prioritization of disease mechanisms, biomarkers, and drug targets in immune-mediated inflammatory diseases (IMIDs) is complicated by altered interactions between thousands of genes. Our multi-organ single-cell RNA sequencing of a mouse IMID model, namely collagen-induced arthritis, shows highly complex and heterogeneous expression changes in all analyzed organs, even though only joints showed signs of inflammation. We organized those into a multi-organ multicellular disease model, which shows predicted molecular interactions within and between organs. That model supports that inflammation is switched on or off by altered balance between pro- and anti-inflammatory upstream regulators (URs) and downstream pathways. Meta-analyses of human IMIDs show a similar, but graded, on/off switch system. This system has the potential to prioritize, diagnose, and treat optimal combinations of URs on the levels of IMIDs, subgroups, and individual patients. That potential is supported by UR analyses in more than 600 sera from patients with systemic lupus erythematosus.


Assuntos
Doenças do Sistema Imunitário , Agentes de Imunomodulação , Animais , Camundongos , Humanos , Medicina de Precisão , Inflamação/metabolismo , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/terapia , Análise de Célula Única
13.
ACS Appl Mater Interfaces ; 15(12): 15449-15457, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36921238

RESUMO

Constructing composite structures is the key to breaking the dilemma of slow reaction kinetics and easy oxidation on the surface of lightly doped p-type silicon nanowire (SiNW) array photocathodes. Electrodeposition is a convenient and fast technique to prepare composite photocathodes. However, the low conductivity of SiNWs limits the application of the electrodeposition technique in constructing composite structures. Herein, SiNWs were loaded with Au nanoparticles by chemical deposition to decrease the interfacial charge transfer resistance and increase active sites for the electrodeposition. Subsequently, co-catalysts CoS, MoS2, and Ni3S2 with excellent hydrogen evolution activity were successfully composited by electrodeposition on the surface of SiNWs/Au. The obtained core-shell structures exhibited excellent photoelectrochemical hydrogen evolution activity, which was contributed by the plasma property of Au and the abundant hydrogen evolution active sites of the co-catalysts. This work provided a simple and efficient solution for the preparation of lightly doped SiNW-based composite structures by electrodeposition.

14.
Biol Direct ; 18(1): 6, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849959

RESUMO

BACKGROUND: Acute myocardial infarction is a major health problem and is the leading cause of death worldwide. Myocardial apoptosis induced by myocardial infarction injury is involved in the pathophysiology of heart failure. Therapeutic stem cell therapy has the potential to be an effective and favorable treatment for ischemic heart disease. Exosomes derived from stem cells have been shown to effectively repair MI injury-induced cardiomyocyte damage. However, the cardioprotective benefits of adipose tissue-derived mesenchymal stem cell (ADSC)-Exos remain unknown. This study aimed to investigate the protective effects of exosomes from ADSC on the hearts of MI-treated mice and to explore the underlying mechanisms. METHODS: Cellular and molecular mechanisms were investigated using cultured ADSCs. On C57BL/6J mice, we performed myocardial MI or sham operations and assessed cardiac function, fibrosis, and angiogenesis 4 weeks later. Mice were intramyocardially injected with ADSC-Exos or vehicle-treated ADSCs after 25 min following the MI operation. RESULTS: Echocardiographic experiments showed that ADSC-Exos could significantly improve left ventricular ejection fraction, whereas ADSC-Exos administration could significantly alleviate MI-induced cardiac fibrosis. Additionally, ADSC-Exos treatment has been shown to reduce cardiomyocyte apoptosis while increasing angiogenesis. Molecular experiments found that exosomes extracted from ADSCs can promote the proliferation and migration of microvascular endothelial cells, facilitate angiogenesis, and inhibit cardiomyocytes apoptosis through miRNA-205. We then transferred isolated exosomes from ADSCs into MI-induced mice and observed decreased cardiac fibrosis, increased angiogenesis, and improved cardiac function. We also observed increased apoptosis and decreased expression of hypoxia-inducible factor-1α and vascular endothelial growth factor in HMEC-1 transfected with a miRNA-205 inhibitor. CONCLUSION: In summary, these findings show that ADSC-Exos can alleviate cardiac injury and promote cardiac function recovery in MI-treated mice via the miRNA-205 signaling pathway. ADSC-Exos containing miRNA205 have a promising therapeutic potential in MI-induced cardiac injury.


Assuntos
Exossomos , MicroRNAs , Infarto do Miocárdio , Animais , Camundongos , Células Endoteliais , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Infarto do Miocárdio/terapia , Volume Sistólico , Fator A de Crescimento do Endotélio Vascular , Função Ventricular Esquerda , Células-Tronco
15.
Int J Biol Sci ; 19(1): 137-155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36594096

RESUMO

Emerging evidence has implicated the important role of fibrosis in diabetic cardiomyopathy (DCM), while the underlying mechanism remains unclear. Considering the distinct and overlapping roles of Cluster of Differentiation 147 (CD147) in the pathogenesis of fibrotic diseases, we aim to investigate the role of CD147 in the fibrosis of DCM and explore its underlying mechanism. AAV9-mediated cardiac-specific CD147 silencing attenuated cardiac fibrosis and cardiac function in diabetic mice. CD147 knockdown significantly inhibited high glucose (HG)-induced activation of CFs. Mechanistically, CD147 directly bound to type I transcription growth factor ß (TGF-ß) receptor I (ALK5), promoting ALK5 activation and endocytosis to induce SMAD2/3 phosphorylation and nuclear translocation. In addition, HG prevented the ubiquitin-proteasome-dependent degradation of CD147 by promoting GNT-V-mediated N-glycosylation. As a result, cardiac-specific CD147 overexpression in control mice mimicked diabetes-induced cardiac fibrosis, aggravating cardiac function. Importantly, CD147 was also upregulated in serum and myocardial specimens from patients with diabetes compared with non-diabetes, accompanied by echocardiographic indices of cardiac dysfunction and excessive collagen deposition. Our study provides the first evidence that CD147 acts as a pivotal factor to promote diabetic cardiac fibrosis, and may contribute to the development of future CD147-based therapeutic strategies for DCM.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Camundongos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Glicosilação , Coração , Cardiomiopatias Diabéticas/metabolismo , Fibrose , Miocárdio/metabolismo
16.
Front Microbiol ; 13: 1031878, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532426

RESUMO

Background: ST-segment elevation myocardial infarction (STEMI) in young male patients accounts for a significant proportion of total heart attack events. Therefore, clinical awareness and screening for acute myocardial infarction (AMI) in asymptomatic patients at a young age is required. The gut microbiome is potentially involved in the pathogenesis of STEMI. The aim of the current study is to develop an early risk prediction model based on the gut microbiome and clinical parameters for this population. Methods: A total of 81 young males (age < 44 years) were enrolled in this study. Forty-one young males with STEMI were included in the case group, and the control group included 40 young non-coronary artery disease (CAD) males. To identify the differences in gut microbiome markers between these two groups, 16S rRNA-based gut microbiome sequencing was performed using the Illumina MiSeq platform. Further, a nomogram and corresponding web page were constructed. The diagnostic efficacy and practicability of the model were analyzed using K-fold cross-validation, calibration curves, and decision curve analysis (DCA). Results: Compared to the control group, a significant decrease in tendency regarding α and ß diversity was observed in patients in the case group and identified as a significantly altered gut microbiome represented by Streptococcus and Prevotella. Regarding clinical parameters, compared to the control group, the patients in the case group had a higher body mass index (BMI), systolic blood pressure (SBP), triglyceride (TG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) and low blood urea nitrogen (BUN). Additionally, BMI and SBP were significantly (p<0.05) positively correlated with Streptococcus and [Ruminococcus]. Further, BMI and SBP were significantly (p<0.05) negatively correlated with Prevotella and Megasphaera. A significant negative correlation was only observed between Prevotella and AST (p < 0.05). Finally, an early predictive nomogram and corresponding web page were constructed based on the gut microbiome and clinical parameters with an area under the receiver-operating characteristic (ROC) curve (AUC) of 0.877 and a C-index of 0.911. For the internal validation, the stratified K-fold cross-validation (K = 3) was as follows: AUC value of 0.934. The calibration curves of the model showed good consistency between the actual and predicted probabilities. The DCA results showed that the model had a high net clinical benefit for use in the clinical setting. Conclusion: In this study, we combined the gut microbiome and common clinical parameters to construct a prediction model. Our analysis shows that the constructed model is a non-invasive tool with potential clinical application in predicting STEMI in the young males.

17.
Front Cardiovasc Med ; 9: 942000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440048

RESUMO

Objectives: Most studies have examined the association between serum copper and myocardial infarction, but there is little evidence of the association between dietary copper intake and myocardial infarction. Materials and methods: The study included a total of 14,876 participants from the 2011 to 2018 National Health and Nutrition Examination Survey (NHANES). Multivariate logistic regression model was used to analyze the association between dietary copper intake and the risk of myocardial infarction. To reduce selection bias, we use nearest neighbor propensity score matching (PSM) in a 1:2 ratio. Restricted cubic spline (RCS) method is used to study the non-linear relationship. Subgroup stratification was used to further investigate the association between copper intake and myocardial infarction. Results: The median dietary copper intake was 1.0825 mg/day. A myocardial infarction had occurred in approximately 4.4% (655) of the participants. Before and after matching, multivariate logistic regression models revealed a negative correlation between dietary copper intake and the risk of myocardial infarction. The higher quartile of subjects had a noticeably lower risk of myocardial infarction in comparison to those in the first quartile of copper intake. According to RCS findings, dietary copper intake and myocardial infarction have a non-linear and dose-response relationship. According to stratified analysis, the dietary copper intake was a substantial protective element for those who were ≥ 50 years old, female, 25 ≤BMI <30, with history of smoking, hypertension, diabetes and ortholiposis. Conclusion: Increased dietary copper intake was associated with a lower risk of myocardial infarction. It is especially significant in elderly-aged women, overweight individuals, smokers, hypertension, and diabetic patients.

18.
Redox Biol ; 58: 102537, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36436456

RESUMO

Compromised mitophagy and mitochondrial homeostasis are major contributors for the etiology of cardiac aging, although the precise underlying mechanisms remains elusive. Shank3, a heart-enriched protein, has recently been reported to regulate aging-related neurodegenerative diseases. This study aimed to examine the role of Shank3 in the pathogenesis of cardiac senescence and the possible mechanisms involved. Cardiac-specific conditional Shank3 knockout (Shank3CKO) mice were subjected to natural aging. Mitochondrial function and mitophagy activity were determined in vivo, in mouse hearts and in vitro, in cardiomyocytes. Here, we showed that cardiac Shank3 expression exhibited a gradual increase during the natural progression of the aging, accompanied by overtly decreased mitophagy activity and a decline in cardiac function. Ablation of Shank3 promoted mitophagy, reduced mitochondria-derived superoxide (H2O2 and O2•-) production and apoptosis, and protected against cardiac dysfunction in the aged heart. In an in vitro study, senescent cardiomyocytes treated with D-gal exhibited reduced mitophagy and significantly elevated Shank3 expression. Shank3 knock-down restored mitophagy, leading to increased mitochondrial membrane potential, decreased mitochondrial oxidative stress, and reduced apoptosis in senescent cardiomyocytes, whereas Shank3 overexpression mimicked D-gal-induced mitophagy inhibition and mitochondrial dysfunction in normally cultured cardiomyocytes. Mechanistically, the IP assay revealed that Shank3 directly binds to CaMKII, and this interaction was further increased in the aged heart. Enhanced Shank3/CaMKII binding impedes mitochondrial translocation of CaMKII, resulting in the inhibition of parkin-mediated mitophagy, which ultimately leads to mitochondrial dysfunction and cardiac damage in the aged heart. Our study identified Shank3 as a novel contributor to aging-related cardiac damage. Manipulating Shank3/CaMKII-induced mitophagy inhibition could thus be an optional strategy for therapeutic intervention in clinical aging-related cardiac dysfunctions.


Assuntos
Cardiopatias , Mitofagia , Animais , Camundongos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiopatias/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas dos Microfilamentos/metabolismo , Mitofagia/fisiologia , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
19.
Biol Direct ; 17(1): 32, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384975

RESUMO

BACKGROUND: Cardiac fibrosis is a leading cause of cardiac dysfunction in patients with diabetes. However, the underlying mechanisms of cardiac fibrosis remain unclear. This study aimed to investigate the role of the long non-coding RNA (LncRNA) Airn in the pathogenesis of cardiac fibrosis in diabetic cardiomyopathy (DCM) and its underlying mechanism. METHODS: Diabetes mellitus (DM) was induced in mice by streptozotocin injection. An intramyocardial adeno-associated virus (AAV) was used to manipulate Airn expression. The functional significance and underlying mechanisms in DCM fibrosis were investigated both in vitro and in vivo. RESULTS: Diabetic hearts showed a significant impairment in cardiac function, accompanied by obviously increased cardiac fibrosis. Interestingly, lncRNA Airn expression was significantly decreased in both diabetic hearts and high glucose (HG)-treated cardiac fibroblasts (CFs). AAV-mediated Airn reconstitution prevented cardiac fibrosis and the development of DCM, while Airn knockdown induced cardiac fibrosis phenotyping DCM. As in vitro, Airn reversed HG-induced fibroblast-myofibroblast transition, aberrant CFs proliferation and section of collagen I. In contrast, Airn knockdown mimicked a HG-induced CFs phenotype. Mechanistically, we identified that Airn exerts anti-fibrotic effects by directly binding to insulin-like growth factor 2 mRNA-binding protein 2 (IMP2) and further prevents its ubiquitination-dependent degradation. Moreover, we revealed that Airn/IMP2 protected p53 mRNA from degradation in m6A manner, leading to CF cell cycle arrest and reduced cardiac fibrosis. As a result, ablation of p53 blunted the inhibitory effects of Airn on fibroblast activation and cardiac fibrosis. CONCLUSIONS: Our study demonstrated for the first time that Airn prevented the development of cardiac fibrosis in diabetic heart via IMP2-p53 axis in an m6A dependent manner. LncRNA Airn could be a promising therapeutic target for cardiac fibrosis in DCM.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , RNA Longo não Codificante , Proteínas de Ligação a RNA , Proteína Supressora de Tumor p53 , Animais , Camundongos , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
20.
Front Immunol ; 13: 946202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189231

RESUMO

B-1 lymphocytes exhibit specialized roles in host defense against multiple pathogens. Despite the fact that CD19+CD93+B220lo/- B cells have been identified as B-1 progenitors, the definition for B-1 progenitors remains to be elucidated as CD19+CD93+B220+ B cells are capable to give rise to B-1 cells. Given that transcription factor Bhlhe41 is highly and preferentially expressed in B-1 cells and regulates B-1a cell development, we generated a transgenic mouse model, Bhlhe41dTomato-Cre , for fate mapping and functional analysis of B-1 cells. Bhlhe41dTomato-Cre mice efficiently traced Bhlhe41 expression, which was mainly restricted to B-1 cells in B-cell lineage. We showed an efficient and specific Cre-mediated DNA recombination in adult B-1 cells and neonatal B-1 progenitors rather than B-2 cells by flow cytometric analysis of Bhlhe41 dTomato-Cre/+ Rosa26 EYFP mice. Treatment of Bhlhe41 dTomato-Cre/+ Rosa26 iDTR mice with diphtheria toxin revealed a robust efficacy of B-1 cell depletion. Interestingly, using Bhlhe41 dTomato-Cre mice, we demonstrated that neonatal B-1 progenitors (CD19+CD93+B220lo/-) expressed Bhlhe41 and were identical to well-defined transitional B-1a progenitors (CD19+CD93+B220lo/-CD5+), which only gave rise to peritoneal B-1a cells. Moreover, we identified a novel population of neonatal splenic CD19hidTomato+B220hiCD43loCD5lo B cells, which differentiated to peritoneal B-1a and B-1b cells. Bhlhe41 deficiency impaired the balance between CD19hidTomato+B220lo/-CD5hi and CD19hidTomato+B220hiCD5lo cells. Hence, we identified neonatal CD19hidTomato+B220hiCD43loCD5lo B cells as novel transitional B-1 progenitors. Bhlhe41 dTomato-Cre/+ mouse can be used for fate mapping and functional studies of B-1 cells in host-immune responses.


Assuntos
Subpopulações de Linfócitos B , Animais , Antígenos CD19/genética , Antígenos CD19/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA/metabolismo , Toxina Diftérica/metabolismo , Modelos Animais de Doenças , Integrases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...