Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37713223

RESUMO

Existing works mainly focus on crowd and ignore the confusion regions which contain extremely similar appearance to crowd in the background, while crowd counting needs to face these two sides at the same time. To address this issue, we propose a novel end-to-end trainable confusion region discriminating and erasing network called CDENet. Specifically, CDENet is composed of two modules of confusion region mining module (CRM) and guided erasing module (GEM). CRM consists of basic density estimation (BDE) network, confusion region aware bridge and confusion region discriminating network. The BDE network first generates a primary density map, and then the confusion region aware bridge excavates the confusion regions by comparing the primary prediction result with the ground-truth density map. Finally, the confusion region discriminating network learns the difference of feature representations in confusion regions and crowds. Furthermore, GEM gives the refined density map by erasing the confusion regions. We evaluate the proposed method on four crowd counting benchmarks, including ShanghaiTech Part_A, ShanghaiTech Part_B, UCF_CC_50, and UCF-QNRF, and our CDENet achieves superior performance compared with the state-of-the-arts.

2.
IEEE Trans Cybern ; 43(1): 77-89, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22692925

RESUMO

Gait analysis provides a feasible approach for identification in intelligent video surveillance. However, the effectiveness of the dominant silhouette-based approaches is overly dependent upon background subtraction. In this paper, we propose a novel incremental framework based on optical flow, including dynamics learning, pattern retrieval, and recognition. It can greatly improve the usability of gait traits in video surveillance applications. Local binary pattern (LBP) is employed to describe the texture information of optical flow. This representation is called LBP flow, which performs well as a static representation of gait movement. Dynamics within and among gait stances becomes the key consideration for multiframe detection and tracking, which is quite different from existing approaches. To simulate the natural way of knowledge acquisition, an individual hidden Markov model (HMM) representing the gait dynamics of a single subject incrementally evolves from a population model that reflects the average motion process of human gait. It is beneficial for both tracking and recognition and makes the training process of the HMM more robust to noise. Extensive experiments on widely adopted databases have been carried out to show that our proposed approach achieves excellent performance.

3.
IEEE Trans Syst Man Cybern B Cybern ; 41(5): 1429-39, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21622075

RESUMO

This paper proposes a supervised modeling approach for gait-based gender classification. Different from traditional temporal modeling methods, male and female gait traits are competitively learned by the addition of gender labels. Shape appearance and temporal dynamics of both genders are integrated into a sequential model called mixed conditional random field (CRF) (MCRF), which provides an open framework applicable to various spatiotemporal features. In this paper, for the spatial part, pyramids of fitting coefficients are used to generate the gait shape descriptors; for the temporal part, neighborhood-preserving embeddings are clustered to allocate the stance indexes over gait cycles. During these processes, we employ evaluation functions like the partition index and Xie and Beni's index to improve the feature sparseness. By fusion of shape descriptors and stance indexes, the MCRF is constructed in coordination with intra- and intergender temporary Markov properties. Analogous to the maximum likelihood decision used in hidden Markov models (HMMs), several classification strategies on the MCRF are discussed. We use CASIA (Data set B) and IRIP Gait Databases for the experiments. The results show the superior performance of the MCRF over HMMs and separately trained CRFs.


Assuntos
Inteligência Artificial , Marcha/fisiologia , Modelos Biológicos , Reconhecimento Automatizado de Padrão/métodos , Análise para Determinação do Sexo/métodos , Análise por Conglomerados , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Cadeias de Markov , Dinâmica não Linear , Reprodutibilidade dos Testes , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...