Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(36): 42706-42716, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37646254

RESUMO

Quasi-two-dimensional (quasi-2D) perovskites exhibit excellent performance when applied to light-emitting diodes (LEDs). However, quasi-2D perovskite films generally have nonuniform n phases and irregular internal crystal structures, which degrade the device's performance. Here, we propose using a Dion-Jacobson (DJ)-type organic spacer to modulate the phase distribution of the Ruddlesden-Popper (RP) quasi-2D perovskite. A DJ-type organic spacer cation, 1.6-hexamethylenediamine (HDABr2), was introduced into the perovskite as the second spacer cation with propylamine hydrobromide (PABr). As DJ-type and RP-type perovskites have similar spacings, RP-DJ style does not cause a chaotic crystalline structure; instead, it modulates the perovskite crystallization and narrows the phase distribution. In parallel, there is a substantial improvement in the maximum luminance, current efficiency, external quantum efficiency, and device stability of the quasi-2D perovskite LEDs. This work provides a novel concept for combining the organic spacer cations for quasi-2D perovskites.

2.
Phys Rev Lett ; 131(1): 016202, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478437

RESUMO

For the semiconductors of atomic length scales, even one atom layer difference could modify crystal symmetry and lead to a significant change in electronic structure, which is essential for modern electronics. However, the experimental exploration of such effect has not been achieved due to challenges in sample fabrication and characterization with atomic-scale precision. Here, we report the discovery of crystal symmetry alternation induced band-gap oscillation in atomically thin PbTe films by scanning tunneling microscopy. As the thickness of PbTe films is reduced from an 18- to 2-atomic layer, the band-gap size not only expands from 0.19 eV to 1.06 eV by 5.6 fold, but also exhibits an even-odd-layer oscillation, which is attributed to the alternating crystal symmetries between P4/mmm and P4/nmm. Our work sheds new light on electronic structure engineering of semiconductors at atomic scale for next-generation nanoelectronics.

3.
Nat Commun ; 12(1): 2846, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990597

RESUMO

We propose a new type of spin-valley locking (SVL), named C-paired SVL, in antiferromagnetic systems, which directly connects the spin/valley space with the real space, and hence enables both static and dynamical controls of spin and valley to realize a multifunctional antiferromagnetic material. The new emergent quantum degree of freedom in the C-paired SVL is comprised of spin-polarized valleys related by a crystal symmetry instead of the time-reversal symmetry. Thus, both spin and valley can be accessed by simply breaking the corresponding crystal symmetry. Typically, one can use a strain field to induce a large net valley polarization/magnetization and use a charge current to generate a large noncollinear spin current. We predict the realization of the C-paired SVL in monolayer V2Se2O, which indeed exhibits giant piezomagnetism and can generate a large transverse spin current. Our findings provide unprecedented opportunities to integrate various controls of spin and valley with nonvolatile information storage in a single material, which is highly desirable for versatile fundamental research and device applications.

4.
Adv Mater ; 33(7): e2004930, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33382156

RESUMO

The WSe2 monolayer in 1T' phase is reported to be a large-gap quantum spin Hall insulator, but is thermodynamically metastable and so far the fabricated samples have always been in the mixed phase of 1T' and 2H, which has become a bottleneck for further exploration and potential applications of the nontrivial topological properties. Based on first-principle calculations in this work, it is found that the 1T' phase could be more stable than 2H phase with enhanced interface interactions. Inspired by this discovery, SrTiO3 (100) is chosen as substrate and WSe2 monolayer is successfully grown in a 100% single 1T' phase using the molecular beam epitaxial method. Combining in situ scanning tunneling microscopy and angle-resolved photoemission spectroscopy measurements, it is found that the in-plane compressive strain in the interface drives the 1T'-WSe2 into a semimetallic phase. Besides providing a new material platform for topological states, the results show that the interface interaction is a new approach to control both the structure phase stability and the topological band structures of transition metal dichalcogenides.

5.
Phys Rev Lett ; 125(4): 046801, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32794806

RESUMO

A quantum spin hall insulator is manifested by its conducting edge channels that originate from the nontrivial topology of the insulating bulk states. Monolayer 1T^{'}-WTe_{2} exhibits this quantized edge conductance in transport measurements, but because of its semimetallic nature, the coherence length is restricted to around 100 nm. To overcome this restriction, we propose a strain engineering technique to tune the electronic structure, where either a compressive strain along the a axis or a tensile strain along the b axis can drive 1T^{'}-WTe_{2} into an full gap insulating phase. A combined study of molecular beam epitaxy and in situ scanning tunneling microscopy or spectroscopy then confirmed such a phase transition. Meanwhile, the topological edge states were found to be very robust in the presence of strain.

6.
Phys Chem Chem Phys ; 19(2): 1303-1310, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27966699

RESUMO

Lateral heterostructures built from an armchair MoS2 nanoribbon (AMoS2NR) and an armchair NbS2 nanoribbon (ANbS2NR) were studied based on first-principles calculations and a non-equilibrium Green's function method. It is found that the work function of the AMoS2NR shows substantial oscillation with increasing nanoribbon width, which is different from the work functions of other kinds of nanoribbons. The AMoS2NR-ANbS2NR lateral heterostructure exhibits an anomalous transport gap that is much larger than the bandgap of the AMoS2NR. As a result, a field effect transistor with AMoS2NR as the channel and ANbS2NRs as electrodes has high on-off ratios of 106-107 and a tiny leakage current of the order of 10-8 µA. These results suggest that lateral metal-semiconductor heterostructures of transition metal dichalcogenides may have potential applications in nanodevices with low energy consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...