Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Assist Tomogr ; 45(1): 110-120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33475317

RESUMO

OBJECTIVE: To investigate the value of radiomics analyses based on different magnetic resonance (MR) sequences in the noninvasive evaluation of glioma characteristics for the differentiation of low-grade glioma versus high-grade glioma, isocitrate dehydrogenase (IDH)1 mutation versus IDH1 wild-type, and mutation status and 6-methylguanine-DNA methyltransferase (MGMT) promoter methylation (+) versus MGMT promoter methylation (-) glioma. METHODS: Fifty-nine patients with untreated glioma who underwent a standard 3T-MR tumor protocol were included in the study. A total of 396 radiomics features were extracted from the MR images, with the manually delineated tumor as the volume of interest. Clinical imaging diagnostic features (tumor location, necrosis/cyst change, crossing midline, and the degree of enhancement or peritumoral edema) were analyzed by univariate logistic regression to select independent clinical factors. Radiomics and combined clinical-radiomics models were established for grading and molecular genomic typing of glioma by multiple logistic regression and cross-validation. The performance of the models based on different sequences was evaluated by using receiver operating characteristic curves, nomograms, and decision curves. RESULTS: The radiomics model based on T1-CE performed better than models based on other sequences in predicting the tumor grade and the IDH1 status of the glioma. The radiomics model based on T2 performed better than models based on other sequences in predicting the MGMT methylation status of glioma. Only the T1 combined clinical-radiomics model showed improved prediction performance in predicting tumor grade and the IDH1 status. CONCLUSIONS: The results demonstrate that state-of-the-art radiomics analysis methods based on multiparametric MR image data and radiomics features can significantly contribute to pretreatment glioma grading and molecular subtype classification.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioma/diagnóstico por imagem , Isocitrato Desidrogenase/genética , Imageamento por Ressonância Magnética/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Idoso , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Metilação de DNA , Feminino , Glioma/genética , Glioma/patologia , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Regiões Promotoras Genéticas , Adulto Jovem
2.
Exp Ther Med ; 12(5): 3181-3188, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27882135

RESUMO

Ischemia/reperfusion (I/R) injury can occur during small-for-size liver transplantation, resulting in delayed graft function and decreased long-term graft survival. The aim of the present study was to evaluate the effects of genetic overexpression of endothelial nitric oxide synthase (eNOS) in protecting hepatocytes against I/R injury in a rat model of small-for-size liver transplantation. L02 liver cells were transfected with the eNOS gene using an adenovirus (Ad-eNOS). eNOS expression was detected using quantitative polymerase chain reaction and western blot analysis. To evaluate the effect of eNOS overexpression, L02 cells were placed in a hypoxic environment for 12 h and immediately transferred to an oxygen-enriched atmosphere. For in vivo testing, rats pretreated with Ad-eNOS or control underwent small-for-size liver transplantation. At 6 h after reperfusion, the bile quantity, serum transaminase and nitric oxide (NO) levels, and histological outcomes were evaluated. Cell apoptosis was assessed by flow cytometry or TUNEL assay. In vitro, Ad-eNOS prevented apoptosis in L02 cells with an increase in the level of NO in culture supernatant. In vivo, Ad-eNOS pre-treatment significantly increased bile production, improved abnormal transaminase levels, diminished apoptosis among liver cells, and decreased hepatocellular damage at 6 h after I/R injury. The eNOS-mediated renal protective effects might be associated with the downregulation of tumor necrosis factor-α and a reduction in macrophage activation in the early stage of reperfusion in small-for-size liver allografts. eNOS-derived NO production significantly attenuates hepatic I/R injury. Thus, eNOS overexpression constitutes a promising therapeutic approach to prevent liver I/R injury following small-for-size liver transplantation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...