Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Protoc ; 4(4): e1028, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38646944

RESUMO

Proteomics and phosphoproteomics play crucial roles in elucidating the dynamics of post-transcriptional processes. While experimental methods and workflows have been established in this field, a persistent challenge arises when dealing with small samples containing a limited amount of protein. This limitation can significantly impact the recovery of peptides and phosphopeptides. In response to this challenge, we have developed a comprehensive experimental workflow tailored specifically for small-scale samples, with a special emphasis on neuronal tissues like the trigeminal ganglion. Our proposed workflow consists of seven steps aimed at optimizing the preparation of limited tissue samples for both proteomic and phosphoproteomic analyses. One noteworthy innovation in our approach involves the utilization of a dual enrichment strategy for phosphopeptides. Initially, we employ Fe-NTA Magnetic beads, renowned for their specificity and effectiveness in capturing phosphopeptides. Subsequently, we complement this approach with the TiO2-based method, which offers a broader spectrum of phosphopeptide recovery. This innovative workflow not only overcomes the challenges posed by limited sample sizes but also establishes a new benchmark for precision and efficiency in proteomic investigations. Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Protein extraction and digestion Basic Protocol 2: TMT labeling and peptide cleanup Basic Protocol 3: IMAC Fe-NTA magnetic beads phosphopeptide enrichment Basic Protocol 4: TiO2 enrichment Basic Protocol 5: Fe-NTA phosphopeptide Enrichment Basic Protocol 6: High pH peptide fractionation Basic protocol 7: LC-MS/MS analysis and database search.


Assuntos
Fosfopeptídeos , Proteômica , Fluxo de Trabalho , Proteômica/métodos , Fosfopeptídeos/análise , Fosfopeptídeos/isolamento & purificação , Animais , Espectrometria de Massas em Tandem , Gânglio Trigeminal/metabolismo , Cromatografia Líquida/métodos
2.
Bioengineering (Basel) ; 10(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37508797

RESUMO

Osteoarthritis scaffold-based grafts fail because of poor integration with the surrounding soft tissue and inadequate tribological properties. To circumvent this, we propose electrospun poly(ε-caprolactone)/zein-based scaffolds owing to their biomimetic capabilities. The scaffold surfaces were characterized using Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, static water contact angles, and profilometry. Scaffold biocompatibility properties were assessed by measuring protein adsorption (Bicinchoninic Acid Assay), cell spreading (stained F-actin), and metabolic activity (PrestoBlue™ Cell Viability Reagent) of primary bovine chondrocytes. The data show that zein surface segregation in the membranes not only completely changed the hydrophobic behavior of the materials, but also increased the cell yield and metabolic activity on the scaffolds. The surface segregation is verified by the infrared peak at 1658 cm-1, along with the presence and increase in N1 content in the survey XPS. This observation could explain the decrease in the water contact angles from 125° to approximately 60° in zein-comprised materials and the decrease in the protein adsorption of both bovine serum albumin and synovial fluid by half. Surface nano roughness in the PCL/zein samples additionally benefited the radial spreading of bovine chondrocytes. This study showed that co-electrospun PCL/zein scaffolds have promising surface and biocompatibility properties for use in articular-tissue-engineering applications.

3.
J Phys Condens Matter ; 35(43)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37463595

RESUMO

Artificial microswimmers, i.e. colloidal scale objects capable of self-propulsion, have garnered significant attention due to their central role as models for out of equilibrium systems. Moreover, their potential applications in diverse fields such as biomedicine, environmental remediation, and materials science have long been hypothesized, often in conjunction with their ability to deliver cargoes to overcome mass transport limitations. A very efficient way to load molecular cargoes is to disperse them in a liquid compartment, however, fabricating microswimmers with multiple liquid compartments remains a significant challenge. To address this challenge, we present a modular fabrication platform that combines microfluidic synthesis and sequential capillarity-assisted particle assembly (sCAPA) for microswimmers with various liquid compartments. We demonstrate the synthesis of monodisperse, small polymer-based microcapsules (Ø = 3-6µm) with different liquid cargoes using a flow-focusing microfluidic device. By employing the sCAPA technique, we assemble multiple microcapsules into microswimmers with high precision, resulting in versatile microswimmers with multiple liquid compartments and programmable functionalities. Our work provides a flexible approach for the fabrication of modular microswimmers, which could potentially actively transport cargoes and release them on demand in the future.

4.
J Colloid Interface Sci ; 634: 921-929, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36571855

RESUMO

HYPOTHESIS: The synthesis of compositionally heterogeneous particles is central to the development of complex colloidal units for self-assembly and self-propulsion. Yet, as the complexity of particles grows, synthesis becomes more prone to "errors". We hypothesize that alternating-current dielectrophoretic forces can efficiently sort Janus particles, as a function of patch size and material, and colloidal dumbbells by size. EXPERIMENTS: We prepared Janus particles with different patch size and material by physical vapor deposition and colloidal dumbbells via capillarity-assisted particle assembly. We then performed sorting experiments in a microfluidic chip comprising electrodes with asymmetric orifices, specifically exploiting the dielectric contrast between different portions of the particles or their size difference to steer them towards different outlets. FINDINGS: We calculated that the DEP force for Janus particles may switch from positive to negative as a function of composition at a critical AC frequency, thus enabling sorting different particles crossing the electrodes' region. The predictions are confirmed by optical microscopy experiments. We also show that intact and "broken" dumbbells can be simply separated as they experience different DEP forces. The integration of multiple asymmetric orifices leads a larger zone with high field gradient to increase separation efficiency and makes it a promising tool to select precise particle populations, isolating fractions with narrowly distributed characteristics.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Eletroforese , Eletrodos , Coloides
5.
J Colloid Interface Sci ; 632(Pt A): 44-53, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403376

RESUMO

Nickel-iron oxides are competitive electrocatalysts for oxygen evolution reaction, but their practical applications are restricted by the less-than-desirable intrinsic activity and working stability. To tackle the challenge, surface coordination chemistry is applied to the nickel-iron oxides through a complex-assisted in-situ crystal growth strategy. The ethylenediaminetetraacetate (EDTA) coordinated NixFe3-xO4 (NixFe3-xO4-EDTA) is prepared by a simple one-pot hydrothermal process. The coordinated EDTA molecules can deeply alter the surface coordination structure of the NixFe3-xO4. The NixFe3-xO4-EDTA demonstrates outstanding intrinsic activity towards oxygen evolution reaction, requiring only a small overpotential of 180 mV to reach 10 mA cm-2 in 1.0 M KOH. Moreover, the NixFe3-xO4-EDTA exhibits extremely stable long-term working stability. Density functional theory calculations show that the highly enhanced intrinsic activity is attributed to the surface coordinated EDTA-induced favorable electronic structure and coordination environment, which tunes the adsorption strength of the intermediates and optimizes the energetics of the elementary steps, while the high stability is ascribed to the strong coordination ability of EDTA.

6.
Sci Rep ; 12(1): 17012, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220867

RESUMO

Diabetic peripheral neuropathy (DPN) is characterized by spontaneous pain in the extremities. Incidence of DPN continues to rise with the global diabetes epidemic. However, there remains a lack of safe, effective analgesics to control this chronic painful condition. Dorsal root ganglia (DRG) contain soma of sensory neurons and modulate sensory signal transduction into the central nervous system. In this study, we aimed to gain a deeper understanding of changes in molecular pathways in the DRG of DPN patients with chronic pain. We recently reported transcriptomic changes in the DRG with DPN. Here, we expand upon those results with integrated metabolomic, proteomic, and phospho-proteomic analyses to compare the molecular profiles of DRG from DPN donors and DRG from control donors without diabetes or chronic pain. Our analyses identified decreases of select amino acids and phospholipid metabolites in the DRG from DPN donors, which are important for cellular maintenance. Additionally, our analyses revealed changes suggestive of extracellular matrix (ECM) remodeling and altered mRNA processing. These results reveal new insights into changes in the molecular profiles associated with DPN.


Assuntos
Dor Crônica , Diabetes Mellitus , Neuropatias Diabéticas , Neuralgia , Humanos , Aminoácidos/metabolismo , Dor Crônica/metabolismo , Diabetes Mellitus/metabolismo , Neuropatias Diabéticas/complicações , Gânglios Espinais/metabolismo , Neuralgia/metabolismo , Fosfolipídeos/metabolismo , Proteômica , RNA Mensageiro/metabolismo , Células Receptoras Sensoriais/metabolismo
7.
Mater Horiz ; 9(6): 1641-1648, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35466981

RESUMO

The assembly of nanomaterials into suprastructures offers the possibility to fabricate larger scale functional materials, whose inner structure strongly influences their functionality for a vast range of applications. In spite of the many current strategies, achieving multi-compartment structures in a targeted and versatile way remains highly challenging. Here, we describe a controllable and straightforward route to create uniform suprastructured materials with a multi-compartmentalized architecture by confining primary nanocapsules into droplets using a cross-junction microfluidic device. Following solvent evaporation from the droplets, the nanocapsules spontaneously assemble into precisely sized multi-compartment particles, which we term supracapsules. Thanks to the process, each spatially separated nanocapsule unit retains its cargo and functionalities within the resulting supracapsules. However, new collective properties emerge, and, particularly, programmable release profiles that are distinct from those of single-compartment capsules. Finally, the suprastructures can be disassembled into single-compartment units by applying ultra-sonication, switching their release to a burst-release mode. These findings open up exciting opportunities to fabricate multi-compartment suprastructures incorporating diverse functionalities for materials with emerging properties.


Assuntos
Nanocápsulas , Nanoestruturas , Cápsulas , Nanocápsulas/química
8.
Cell Rep ; 38(10): 110458, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263573

RESUMO

The mechanisms underlying facial pain are still incompletely understood, posing major therapeutic challenges. Cyclin-dependent kinase 5 (Cdk5) is a key neuronal kinase involved in pain signaling. However, the regulatory roles of Cdk5 in facial pain signaling and the possibility of therapeutic intervention at the level of mouse trigeminal ganglion primary neurons remain elusive. In this study, we use optimized intravital imaging to directly compare trigeminal neuronal activities after mechanical, thermal, and chemical stimulation. We then test whether facial inflammatory pain in mice could be alleviated by the Cdk5 inhibitor peptide TFP5. We demonstrate regulation of total Ca2+ intensity by Cdk5 activity using transgenic and knockout mouse models. In mice with vibrissal pad inflammation, application of TFP5 specifically decreases total Ca2+ intensity in response to noxious stimuli. It also alleviates inflammation-induced allodynia by inhibiting activation of trigeminal peripheral sensory neurons. Cdk5 inhibitors may provide promising non-opioid candidates for pain treatment.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Gânglio Trigeminal , Animais , Dor Facial , Inflamação , Camundongos , Células Receptoras Sensoriais
9.
Langmuir ; 36(38): 11171-11182, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32897078

RESUMO

Control over the surface roughness of colloidal particles offers exciting opportunities to tailor the properties and the processing of a broad range of soft matter systems. Moreover, identifying surface roughness as a design parameter reveals the possibility to connect seemingly distinct phenomena and materials via the role played by roughness effects. In this feature article, we concisely review some approaches to synthesize and characterize rough colloidal particles, with a focus on model spherical colloids. We then discuss the impact that surface roughness has on both the high-shear rheology of dense suspensions and the stabilization of Pickering emulsions. Commenting on developments of our own research, we aim to offer an original perspective for a property-oriented development of colloidal particles that transcends classical divisions between materials and processes toward innovative solutions.

10.
Macromolecules ; 53(17): 7312-7321, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32921812

RESUMO

We study the effect of entanglements on the glass transition of high molecular weight polymers, by the comparison of single-chain nanoparticles (SCNPs) and equilibrated melts of high-molecular weight polystyrene of identical molecular weight. SCNPs were prepared by electrospraying technique and characterized using scanning electron microscopy and atomic force microscopy techniques. Differential scanning calorimetry, Brillouin light spectroscopy, and rheological experiments around the glass transition were compared. In parallel, entangled and disentangled polymer melts were also compared under cooling from molecular dynamics simulations based on a bead-spring polymer model. While experiments suggest a small decrease in the glass transition temperature of films of nanoparticles in comparison to entangled melts, simulations do not observe any significant difference, despite rather different chain conformations.

11.
Adv Mater ; 32(11): e1908008, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32009264

RESUMO

Durable and biocompatible superhydrophobic surfaces are of significant potential use in biomedical applications. Here, a nonfluorinated, elastic, superhydrophobic film that can be used for medical wound dressings to enhance their hemostasis function is introduced. The film is formed by titanium dioxide nanoparticles, which are chemically crosslinked in a poly(dimethylsiloxane) (PDMS) matrix. The PDMS crosslinks result in large strain elasticity of the film, so that it conforms to deformations of the substrate. The photocatalytic activity of the titanium dioxide provides surfaces with both self-cleaning and antibacterial properties. Facile coating of conventional wound dressings is demonstrated with this composite film and then resulting improvement for hemostasis. High gas permeability and water repellency of the film will provide additional benefit for medical applications.


Assuntos
Bandagens , Materiais Biocompatíveis/química , Hemostasia , Nanopartículas/química , Titânio/química , Antibacterianos/química , Antibacterianos/farmacologia , Bandagens/microbiologia , Materiais Biocompatíveis/farmacologia , Catálise , Elasticidade , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/prevenção & controle , Hemostasia/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Luz , Teste de Materiais , Propriedades de Superfície , Titânio/farmacologia
12.
ACS Nano ; 14(1): 498-508, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31887001

RESUMO

One of the dreams of nanotechnology is to create tiny objects, nanobots, that are able to perform difficult tasks in dimensions and locations that are not directly accessible. One basic function of these nanobots is motility. Movements created by self-propelled micro- and nanovehicles are usually dependent on the production of propellants from catalytic reactions of fuels present in the environment. Developing self-powered nanovehicles with internally stored fuels that display motion regulated by external stimuli represents an intriguing and challenging alternative. Herein, a one-step preparation of fuel-containing nanovehicles that feature a motion that can be regulated by external stimuli is reported. Nanovehicles are prepared via a sol-gel process confined at the oil/water interface of miniemulsions. The nanovehicles display shapes ranging from mushroom-like to truncated cones and a core-shell structure so that the silica shell acts as a hull for the nanovehicles while the core is used to store the fuel. Azo-based initiators are loaded in the nanovehicles, which are activated to release nitrogen gas upon increase of temperature or exposure to UV light. Enhanced diffusion of nanovehicles is achieved upon decomposition of the fuel.

13.
ACS Nano ; 13(3): 3015-3022, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30802035

RESUMO

Superparamagnetism exists only in nanocrystals, and to endow micro/macro-materials with superparamagnetism, superparamagnetic nanoparticles have to be assembled into complex materials. Most techniques currently used to produce such assemblies are inefficient in terms of time and material. Herein, we used evaporation-guided assembly to produce superparamagnetic supraparticles by drying ferrofluid droplets on a superamphiphobic substrate in the presence of an external magnetic field. By tuning the concentration of ferrofluid droplets and controlling the magnetic field, barrel-like, cone-like, and two-tower-like supraparticles were obtained. These assembled supraparticles preserved the superparamagnetism of the original nanoparticles. Moreover, other colloids can easily be integrated into the ferrofluid suspension to produce, by co-assembly, anisotropic binary supraparticles with additional functions. Additionally, the magnetic and anisotropic nature of the resulting supraparticles was harnessed to prepare magnetically actuable microswimmers.

14.
Curr Protoc Cell Biol ; 83(1): e84, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30724481

RESUMO

Visualization of dynamic cellular activity has greatly expanded our understanding of brain function. Recently, there has been an increasing number of studies imaging rodent brain activity in real time. However, traditional in vivo calcium imaging technology has been limited to superficial brain structures. Because the trigeminal ganglion (TG) is located deep within the cranial cavity of mice, few studies have been able to access to it. To circumvent this limitation, overlying brain tissue must be removed to expose the TG so that optical recording can access deep brain neural ensembles. This unit describes a procedure for conducting non-survival surgery to visualize the TG in live mice. Obtaining large ensembles of direct, real-time readouts of sensory neuron signaling, providing temporal and spatial information across the TG, will help to define the cellular basis of orofacial somatic sensing and pain perception. © 2019 by John Wiley & Sons, Inc.


Assuntos
Mapeamento Encefálico/métodos , Gânglio Trigeminal/anatomia & histologia , Animais , Camundongos , Procedimentos Neurocirúrgicos/veterinária , Percepção da Dor , Gânglio Trigeminal/cirurgia
15.
ACS Appl Mater Interfaces ; 10(51): 44722-44730, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30499648

RESUMO

Electrospun polymer mats are widely used in tissue engineering, wearable electronics, and water purification. However, in many environments, the polymer nanofibers prepared by electrospinning suffer from biofouling during long-term usage, resulting in persistent infections and device damage. Herein, we describe the fabrication of polymer mats with CeO2- x nanorods that can prevent biofouling in an aqueous environment. The embedded CeO2- x nanorods are functional mimics of natural haloperoxidases that catalyze the oxidative bromination of Br- and H2O2 to HOBr. The generated HOBr, a natural signaling molecule, disrupted the bacterial quorum sensing, a critical step in biofilm formation. The polymer fibers provide porous structures with high water wettability, and the embedded cerium oxide nanozymes act as a catalyst that can efficiently trigger oxidative bromination, as shown by a haloperoxidase assay. Additionally, the embedded nanozymes enhance the mechanical property of polymer mats, as shown by a single-fiber bending test using atomic force microscopy. We envision that the fabricated polymer mats with CeO2- x nanorods may be used to provide mechanically robust coatings with antibiofouling properties.


Assuntos
Incrustação Biológica/prevenção & controle , Escherichia coli/crescimento & desenvolvimento , Membranas Artificiais , Nanofibras/química , Nanotubos/química , Peroxidases/química , Cério/química , Nanofibras/ultraestrutura , Nanotubos/ultraestrutura
16.
Mol Pain ; 13: 1744806917737205, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28969475

RESUMO

Abstract: Cdk5 is a key neuronal kinase necessary for proper brain development, which has recently been implicated in modulating nociception. Conditional deletion of Cdk5 in pain-sensing neurons attenuates pain responses to heat in both the periphery and orofacial regions. Cdk5 activity is regulated by binding to the activators p35 and p39, both of which possess a cyclin box. Our previous examination of the nociceptive role of the well-characterized Cdk5 activator p35 using mice that either lack or overexpress this regulatory subunit demonstrated that Cdk5/p35 activity affects mechanical, chemical, and thermal nociception. In contrast, the nociceptive role of Cdk5's other less-studied activator p39 is unknown. Here, we report that the knockout of p39 in mice did not affect orofacial and peripheral nociception. The lack of any algesic response to nociceptive stimuli in the p39 knockout mice contrasts with the hypoalgesic effects that result from the deletion of p35. Our data demonstrate different and nonoverlapping roles of Cdk5 activators in the regulation of orofacial as well as peripheral nociception with a crucial role for Cdk5/p35 in pain signaling.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Proteínas do Citoesqueleto/deficiência , Dor Facial/metabolismo , Proteínas Ligadas a Lipídeos/deficiência , Proteínas do Tecido Nervoso/metabolismo , Animais , Quinase 5 Dependente de Ciclina/genética , Dor Facial/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Percepção da Dor/fisiologia , Fosfotransferases/metabolismo , Sensação/fisiologia , Transdução de Sinais/fisiologia
17.
ACS Appl Mater Interfaces ; 9(43): 38024-38031, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29019391

RESUMO

The concentrations of the redox pair hydrogen peroxide (H2O2) and oxygen (O2) can promote or decelerate the progression and duration of the wound healing process. Although H2O2 can reach critically high concentrations and prohibit healing, a sufficient O2 inflow to the wound is commonly desired. Herein, we describe the fabrication and use of a membrane that can contemptuously decrease H2O2 and increase O2 levels. Therefore, hematite nanozyme particles were integrated into electrospun and cross-linked poly(vinyl alcohol) membranes. Within the dual-compound membrane, the polymeric mesh provides a porous scaffold with high water permeability and the nanozymes act as a catalyst with catalase-like activity that can efficiently convert H2O2 into O2, as shown by a catalase assay. When comparing the growth of fibroblasts at an H2O2 concentration of 50 µM, the growth was largely enhanced when applying the nanozyme dressing. Thus, application of the nanozyme dressing can significantly reduce the harmful effect of higher H2O2 concentrations. The described catalytic membranes could be used in the future to provide an improved environment for cell proliferation in wounds and thus applied as advanced wound healing dressings.


Assuntos
Peróxido de Hidrogênio/química , Bandagens , Catalase , Oxirredução , Cicatrização
18.
Neurosci Lett ; 627: 13-7, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27233219

RESUMO

The medial amygdala (MeA) is crucial for sexual behavior; kisspeptin (Kiss1) also plays a role in sexual function. Kisspeptin receptor (Kiss1r) knockout mice display no sexual behavior. Recently Kiss1 and Kiss1r have been discovered in the posterodorsal subnucleus of the medial amygdala (MePD). We hypothesised that Kiss1 in the MePD may have an influence on male sexual behavior. To test this we bilaterally cannulated the MePD and infused kisspeptin-10 in male rats. This caused the rats to have multiple erections, an effect specific to Kiss1 receptor activation, because Kiss1r antagonism blocked the erectile response. When Kiss1 was infused into the lateral cerebroventricle, there were no observed erections. We also measured the plasma levels of LH when Kiss1 is infused into the MePD or lateral cerebroventricle; Kiss1 increased plasma LH to comparable levels when infused into both sites. We conclude that Kiss1 has a role in male sexual behavior, which is specific to the MePD.


Assuntos
Complexo Nuclear Corticomedial/efeitos dos fármacos , Complexo Nuclear Corticomedial/fisiologia , Kisspeptinas/administração & dosagem , Receptores Acoplados a Proteínas G/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Hormônio Liberador de Gonadotropina/sangue , Hormônio Luteinizante/sangue , Masculino , Ereção Peniana/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Kisspeptina-1
19.
Brain Struct Funct ; 221(4): 2035-47, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-25758403

RESUMO

Kisspeptin (encoded by KISS1) is a crucial activator of reproductive function. The role of kisspeptin has been studied extensively within the hypothalamus but little is known about its significance in other areas of the brain. KISS1 and its cognate receptor are expressed in the amygdala, a key limbic brain structure with inhibitory projections to hypothalamic centers involved in gonadotropin secretion. We therefore hypothesized that kisspeptin has effects on neuronal activation and reproductive pathways beyond the hypothalamus and particularly within the amygdala. To test this, we mapped brain neuronal activity (using manganese-enhanced MRI) associated with peripheral kisspeptin administration in rodents. We also investigated functional relevance by measuring the gonadotropin response to direct intra-medial amygdala (MeA) administration of kisspeptin and kisspeptin antagonist. Peripheral kisspeptin administration resulted in a marked decrease in signal intensity in the amygdala compared to vehicle alone. This was associated with an increase in luteinizing hormone (LH) secretion. In addition, intra-MeA administration of kisspeptin resulted in increased LH secretion, while blocking endogenous kisspeptin signaling within the amygdala by administering intra-MeA kisspeptin antagonist decreased both LH secretion and LH pulse frequency. We provide evidence for the first time that neuronal activity within the amygdala is decreased by peripheral kisspeptin administration and that kisspeptin signaling within the amygdala contributes to the modulation of gonadotropin release and pulsatility. Our data suggest that kisspeptin is a 'master regulator' of reproductive physiology, integrating limbic circuits with the regulation of gonadotropin-releasing hormone neurons and reproductive hormone secretion.


Assuntos
Tonsila do Cerebelo/metabolismo , Kisspeptinas/fisiologia , Hormônio Luteinizante/metabolismo , Reprodução , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Animais , Meios de Contraste , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Kisspeptinas/administração & dosagem , Kisspeptinas/metabolismo , Imageamento por Ressonância Magnética , Manganês , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...