Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vet Pharmacol Ther ; 42(2): 197-206, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30350369

RESUMO

Sanguinarine (SA) and chelerythrine (CHE) are the main active components of the phytogenic livestock feed additive, Sangrovit®. However, little information is available on the pharmacokinetics of Sangrovit® in poultry. The goal of this work was to study the pharmacokinetics of SA, CHE, and their metabolites, dihydrosanguinarine (DHSA) and dihydrochelerythrine (DHCHE), in 10 healthy female broiler chickens following oral (p.o.) administration of Sangrovit® and intravenous (i.v.) administration of a mixture of SA and CHE. The plasma samples were processed using two different simple protein precipitation methods because the parent drugs and metabolites are stable under different pH conditions. The absorption and metabolism of SA following p.o. administration were fast, with half-life (t1/2 ) values of 1.05 ± 0.18 hr and 0.83 ± 0.10 hr for SA and DHSA, respectively. The maximum concentration (Cmax ) of DHSA (2.49 ± 1.4 µg/L) was higher that of SA (1.89 ± 0.8 µg/L). The area under the concentration vs. time curve (AUC) values for SA and DHSA were 9.92 ± 5.4 and 6.08 ± 3.49 ng/ml hr, respectively. Following i.v. administration, the clearance (CL) of SA was 6.79 ± 0.63 (L·h-1 ·kg-1 ) with a t1/2 of 0.34 ± 0.13 hr. The AUC values for DHSA and DHCHE were 7.48 ± 1.05 and 0.52 ± 0.09 (ng/ml hr), respectively. These data suggested that Sangrovit® had low absorption and bioavailability in broiler chickens. The work reported here provides useful information on the pharmacokinetic behavior of Sangrovit® after p.o. and i.v. administration in broiler chickens, which is important for the evaluation of its use in poultry.


Assuntos
Benzofenantridinas/farmacocinética , Galinhas/metabolismo , Isoquinolinas/farmacocinética , Administração Oral , Animais , Benzofenantridinas/administração & dosagem , Benzofenantridinas/sangue , Galinhas/sangue , Cromatografia Líquida de Alta Pressão/veterinária , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacocinética , Feminino , Meia-Vida , Injeções Intravenosas/veterinária , Isoquinolinas/administração & dosagem , Isoquinolinas/sangue , Espectrometria de Massas/veterinária
2.
Microbiome ; 6(1): 211, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482240

RESUMO

BACKGROUND: Sub-therapeutic antibiotics are widely used as growth promoters in the poultry industry; however, the resulting antibiotic resistance threatens public health. A plant-derived growth promoter, Macleaya cordata extract (MCE), with effective ingredients of benzylisoquinoline alkaloids, is a potential alternative to antibiotic growth promoters. Altered intestinal microbiota play important roles in growth promotion, but the underlying mechanism remains unknown. RESULTS: We generated 1.64 terabases of metagenomic data from 495 chicken intestinal digesta samples and constructed a comprehensive chicken gut microbial gene catalog (9.04 million genes), which is also the first gene catalog of an animal's gut microbiome that covers all intestinal compartments. Then, we identified the distinctive characteristics and temporal changes in the foregut and hindgut microbiota. Next, we assessed the impact of MCE on chickens and gut microbiota. Chickens fed with MCE had improved growth performance, and major microbial changes were confined to the foregut, with the predominant role of Lactobacillus being enhanced, and the amino acids, vitamins, and secondary bile acids biosynthesis pathways being upregulated, but lacked the accumulation of antibiotic-resistance genes. In comparison, treatment with chlortetracycline similarly enriched some biosynthesis pathways of nutrients in the foregut microbiota, but elicited an increase in antibiotic-producing bacteria and antibiotic-resistance genes. CONCLUSION: The reference gene catalog of the chicken gut microbiome is an important supplement to animal gut metagenomes. Metagenomic analysis provides insights into the growth-promoting mechanism of MCE, and underscored the importance of utilizing safe and effective growth promoters.


Assuntos
Benzilisoquinolinas/farmacologia , Galinhas/crescimento & desenvolvimento , Galinhas/microbiologia , Substâncias de Crescimento/farmacologia , Lactobacillus/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Animais , Microbioma Gastrointestinal/genética , Probióticos/farmacologia , Ranunculales/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...