Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Xenobiot ; 14(1): 295-307, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38535493

RESUMO

The accumulation of high amounts of plastic waste in the environment has raised ecological and health concerns, particularly in croplands, and biological degradation presents a promising approach for the sustainable treatment of this issue. In this study, a polyvinyl chloride (PVC)-degrading bacterium was isolated from farmland soil samples attached to waste plastic, utilizing PVC as the sole carbon source. The circular chromosome of the strain Cbmb3, with a length of 5,768,926 bp, was subsequently sequenced. The average GC content was determined to be 35.45%, and a total of 5835 open reading frames were identified. The strain Cbmb3 was designated as Bacillus toyonensis based on phylogenomic analyses and genomic characteristics. The bioinformatic analysis of the Cbmb3 genome revealed putative genes encoding essential enzymes involved in PVC degradation. Additionally, the potential genomic characteristics associated with phytoprobiotic effects, such as the synthesis of indole acetic acid and secondary metabolite synthesis, were also revealed. Overall, the present study provides the first complete genome of Bacillus toyonensis with PVC-degrading properties, suggesting that Cbmb3 is a potential strain for PVC bioremediation and application.

2.
Brain Behav Immun ; 119: 317-332, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552925

RESUMO

Complement proteins facilitate synaptic elimination during neurodevelopmental pruning, but neural complement regulation is not well understood. CUB and Sushi Multiple Domains 1 (CSMD1) can regulate complement activity in vitro, is expressed in the brain, and is associated with increased schizophrenia risk. Beyond this, little is known about CSMD1 including whether it regulates complement activity in the brain or otherwise plays a role in neurodevelopment. We used biochemical, immunohistochemical, and proteomic techniques to examine the regional, cellular, and subcellular distribution as well as protein interactions of CSMD1 in the brain. To evaluate whether CSMD1 is involved in complement-mediated synapse elimination, we examined Csmd1-knockout mice and CSMD1-knockout human stem cell-derived neurons. We interrogated synapse and circuit development of the mouse visual thalamus, a process that involves complement pathway activity. We also quantified complement deposition on synapses in mouse visual thalamus and on cultured human neurons. Finally, we assessed uptake of synaptosomes by cultured microglia. We found that CSMD1 is present at synapses and interacts with complement proteins in the brain. Mice lacking Csmd1 displayed increased levels of complement component C3, an increased colocalization of C3 with presynaptic terminals, fewer retinogeniculate synapses, and aberrant segregation of eye-specific retinal inputs to the visual thalamus during the critical period of complement-dependent refinement of this circuit. Loss of CSMD1 in vivo enhanced synaptosome engulfment by microglia in vitro, and this effect was dependent on activity of the microglial complement receptor, CR3. Finally, human stem cell-derived neurons lacking CSMD1 were more vulnerable to complement deposition. These data suggest that CSMD1 can function as a regulator of complement-mediated synapse elimination in the brain during development.

3.
Front Cell Neurosci ; 16: 1055569, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687519

RESUMO

In the olfactory bulb (OB), a large population of axon-less inhibitory interneurons, the granule cells (GCs), coordinate network activity and tune the output of principal neurons, the mitral and tufted cells (MCs), through dendrodendritic interactions. Furthermore, GCs undergo neurogenesis throughout life, providing a source of plasticity to the neural network of the OB. The function and integration of GCs in the OB are regulated by several afferent neuromodulatory signals, including noradrenaline (NA), a state-dependent neuromodulator that plays a crucial role in the regulation of cortical function and task-specific decision processes. However, the mechanisms by which NA regulates GC function are not fully understood. Here, we show that NA modulates hyperpolarization-activated currents (Ih) via the activation of α2-adrenergic receptors (ARs) in adult-born GCs (abGCs), thus directly acting on channels that play essential roles in regulating neuronal excitability and network oscillations in the brain. This modulation affects the dendrodendritic output of GCs leading to an enhancement of lateral inhibition onto the MCs. Furthermore, we show that NA modulates subthreshold resonance in GCs, which could affect the temporal integration of abGCs. Together, these results provide a novel mechanism by which a state-dependent neuromodulator acting on Ih can regulate GC function in the OB.

4.
J Neurosci ; 41(16): 3610-3621, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33687961

RESUMO

Local interneurons of the olfactory bulb (OB) are densely innervated by long-range GABAergic neurons from the basal forebrain (BF), suggesting that this top-down inhibition regulates early processing in the olfactory system. However, how GABAergic inputs modulate the OB output neurons, the mitral/tufted cells, is unknown. Here, in male and female mice acute brain slices, we show that optogenetic activation of BF GABAergic inputs produced distinct local circuit effects that can influence the activity of mitral/tufted cells in the spatiotemporal domains. Activation of the GABAergic axons produced a fast disinhibition of mitral/tufted cells consistent with a rapid and synchronous release of GABA onto local interneurons in the glomerular and inframitral circuits of the OB, which also reduced the spike precision of mitral/tufted cells in response to simulated stimuli. In addition, BF GABAergic inhibition modulated local oscillations in a layer-specific manner. The intensity of locally evoked θ oscillations was decreased on activation of top-down inhibition in the glomerular circuit, while evoked γ oscillations were reduced by inhibition of granule cells. Furthermore, BF GABAergic input reduced dendrodendritic inhibition in mitral/tufted cells. Together, these results suggest that long-range GABAergic neurons from the BF are well suited to influence temporal and spatial aspects of processing by OB circuits.SIGNIFICANCE STATEMENT Disruption of GABAergic inhibition from the basal forebrain (BF) to the olfactory bulb (OB) impairs the discrimination of similar odors, yet how this centrifugal inhibition influences neuronal circuits in the OB remains unclear. Here, we show that the BF GABAergic neurons exclusively target local inhibitory neurons in the OB, having a functional disinhibitory effect on the output neurons, the mitral cells. Phasic inhibition by BF GABAergic neurons reduces spike precision of mitral cells and lowers the intensity of oscillatory activity in the OB, while directly modulating the extent of dendrodendritic inhibition. These circuit-level effects of this centrifugal inhibition can influence the temporal and spatial dynamics of odor coding in the OB.


Assuntos
Antagonistas GABAérgicos/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Bulbo Olfatório/citologia , Bulbo Olfatório/efeitos dos fármacos , Animais , Dendritos/fisiologia , Potenciais Evocados/fisiologia , Feminino , Neurônios GABAérgicos/ultraestrutura , Ritmo Gama/fisiologia , Interneurônios/fisiologia , Interneurônios/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural , Optogenética , Técnicas de Patch-Clamp , Área Pré-Óptica/fisiologia , Prosencéfalo/citologia , Prosencéfalo/fisiologia , Ritmo Teta
5.
J Cereb Blood Flow Metab ; 37(3): 801-813, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27006446

RESUMO

Repetitive hypoxic preconditioning creates long-lasting, endogenous protection in a mouse model of stroke, characterized by reductions in leukocyte-endothelial adherence, inflammation, and infarct volumes. The constitutively expressed chemokine CXCL12 can be upregulated by hypoxia and limits leukocyte entry into brain parenchyma during central nervous system inflammatory autoimmune disease. We therefore hypothesized that the sustained tolerance to stroke induced by repetitive hypoxic preconditioning is mediated, in part, by long-term CXCL12 upregulation at the blood-brain barrier (BBB). In male Swiss Webster mice, repetitive hypoxic preconditioning elevated cortical CXCL12 protein levels, and the number of cortical CXCL12+ microvessels, for at least two weeks after the last hypoxic exposure. Repetitive hypoxic preconditioning-treated mice maintained more CXCL12-positive vessels than untreated controls following transient focal stroke, despite cortical decreases in CXCL12 mRNA and protein. Continuous administration of the CXCL12 receptor (CXCR4) antagonist AMD3100 for two weeks following repetitive hypoxic preconditioning countered the increase in CXCL12-positive microvessels, both prior to and following stroke. AMD3100 blocked the protective post-stroke reductions in leukocyte diapedesis, including macrophages and NK cells, and blocked the protective effect of repetitive hypoxic preconditioning on lesion volume, but had no effect on blood-brain barrier dysfunction. These data suggest that CXCL12 upregulation prior to stroke onset, and its actions following stroke, contribute to the endogenous, anti-inflammatory phenotype induced by repetitive hypoxic preconditioning.


Assuntos
Quimiocina CXCL12/metabolismo , Precondicionamento Isquêmico , Leucócitos/imunologia , Acidente Vascular Cerebral/patologia , Animais , Barreira Hematoencefálica , Movimento Celular/imunologia , Inflamação/patologia , Inflamação/prevenção & controle , Masculino , Camundongos , Regulação para Cima
6.
eNeuro ; 3(5)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27844056

RESUMO

An important contribution to neural circuit oscillatory dynamics is the ongoing activation and inactivation of hyperpolarization-activated currents (Ih). Network synchrony dynamics play an important role in the initial processing of odor signals by the main olfactory bulb (MOB) and accessory olfactory bulb (AOB). In the mouse olfactory bulb, we show that Ih is present in granule cells (GCs), the most prominent inhibitory neuron in the olfactory bulb, and that Ih underlies subthreshold resonance in GCs. In accord with the properties of Ih, the currents exhibited sensitivity to changes in extracellular K+ concentration and ZD7288 (4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidin chloride), a blocker of Ih. ZD7288 also caused GCs to hyperpolarize and increase their input resistance, suggesting that Ih is active at rest in GCs. The inclusion of cAMP in the intracellular solution shifted the activation of Ih to less negative potentials in the MOB, but not in the AOB, suggesting that channels with different subunit composition mediate Ih in these regions. Furthermore, we show that mature GCs exhibit Ih-dependent subthreshold resonance in the theta frequency range (4-12 Hz). Another inhibitory subtype in the MOB, the periglomerular cells, exhibited Ih-dependent subthreshold resonance in the delta range (1-4 Hz), while principal neurons, the mitral cells, do not exhibit Ih-dependent subthreshold resonance. Importantly, Ih size, as well as the strength and frequency of resonance in GCs, exhibited a postnatal developmental progression, suggesting that this development of Ih in GCs may differentially contribute to their integration of sensory input and contribution to oscillatory circuit dynamics.


Assuntos
Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/fisiologia , Animais , Cátions Monovalentes/metabolismo , AMP Cíclico/metabolismo , Eletroporação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Bulbo Olfatório/citologia , Bulbo Olfatório/efeitos dos fármacos , Técnicas de Patch-Clamp , Potássio/metabolismo , Pirimidinas/farmacologia , Ritmo Teta , Técnicas de Cultura de Tecidos
7.
J Neurosci ; 35(30): 10773-85, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26224860

RESUMO

Neuromodulation of olfactory circuits by acetylcholine (ACh) plays an important role in odor discrimination and learning. Early processing of chemosensory signals occurs in two functionally and anatomically distinct regions, the main and accessory olfactory bulbs (MOB and AOB), which receive extensive cholinergic input from the basal forebrain. Here, we explore the regulation of AOB and MOB circuits by ACh, and how cholinergic modulation influences olfactory-mediated behaviors in mice. Surprisingly, despite the presence of a conserved circuit, activation of muscarinic ACh receptors revealed marked differences in cholinergic modulation of output neurons: excitation in the AOB and inhibition in the MOB. Granule cells (GCs), the most abundant intrinsic neuron in the OB, also exhibited a complex muscarinic response. While GCs in the AOB were excited, MOB GCs exhibited a dual muscarinic action in the form of a hyperpolarization and an increase in excitability uncovered by cell depolarization. Furthermore, ACh influenced the input-output relationship of mitral cells in the AOB and MOB differently showing a net effect on gain in mitral cells of the MOB, but not in the AOB. Interestingly, despite the striking differences in neuromodulatory actions on output neurons, chemogenetic inhibition of cholinergic neurons produced similar perturbations in olfactory behaviors mediated by these two regions. Decreasing ACh in the OB disrupted the natural discrimination of molecularly related odors and the natural investigation of odors associated with social behaviors. Thus, the distinct neuromodulation by ACh in these circuits could underlie different solutions to the processing of general odors and semiochemicals, and the diverse olfactory behaviors they trigger. SIGNIFICANCE STATEMENT: State-dependent cholinergic modulation of brain circuits is critical for several high-level cognitive functions, including attention and memory. Here, we provide new evidence that cholinergic modulation differentially regulates two parallel circuits that process chemosensory information, the accessory and main olfactory bulb (AOB and MOB, respectively). These circuits consist of remarkably similar synaptic arrangement and neuronal types, yet cholinergic regulation produced strikingly opposing effects in output and intrinsic neurons. Despite these differences, the chemogenetic reduction of cholinergic activity in freely behaving animals disrupted odor discrimination of simple odors, and the investigation of social odors associated with behaviors signaled by the Vomeronasal system.


Assuntos
Acetilcolina/metabolismo , Bulbo Olfatório/metabolismo , Condutos Olfatórios/metabolismo , Percepção Olfatória/fisiologia , Animais , Colinérgicos/farmacologia , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Bulbo Olfatório/efeitos dos fármacos , Condutos Olfatórios/efeitos dos fármacos , Percepção Olfatória/efeitos dos fármacos , Técnicas de Patch-Clamp , Receptores Muscarínicos/fisiologia
8.
J Neuroinflammation ; 9: 33, 2012 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-22340958

RESUMO

BACKGROUND: A brief exposure to systemic hypoxia (i.e., hypoxic preconditioning; HPC) prior to transient middle cerebral artery occlusion (tMCAo) reduces infarct volume, blood-brain barrier disruption, and leukocyte migration. CCL2 (MCP-1), typically regarded as a leukocyte-derived pro-inflammatory chemokine, can also be directly upregulated by hypoxia-induced transcription. We hypothesized that such a hypoxia-induced upregulation of CCL2 is required for HPC-induced ischemic tolerance. METHODS: Adult male SW/ND4, CCL2-null, and wild-type mice were used in these studies. Cortical CCL2/CCR2 message, protein, and cell-type specific immunoreactivity were determined following HPC (4 h, 8% O2) or room air control (21% O2) from 6 h through 2 weeks following HPC. Circulating leukocyte subsets were determined by multi-parameter flow cytometry in naïve mice and 12 h after HPC. CCL2-null and wild-type mice were exposed to HPC 2 days prior to tMCAo, with immunoneutralization of CCL2 during HPC achieved by a monoclonal CCL2 antibody. RESULTS: Cortical CCL2 mRNA and protein expression peaked at 12 h after HPC (both p < 0.01), predominantly in cortical neurons, and returned to baseline by 2 days. A delayed cerebral endothelial CCL2 message expression (p < 0.05) occurred 2 days after HPC. The levels of circulating monocytes (p < 0.0001), T lymphocytes (p < 0.0001), and granulocytes were decreased 12 h after HPC, and those of B lymphocytes were increased (p < 0.0001), but the magnitude of these respective changes did not differ between wild-type and CCL2-null mice. HPC did decrease the number of circulating CCR2+ monocytes (p < 0.0001) in a CCL2-dependent manner, but immunohistochemical analyses at this 12 h timepoint indicated that this leukocyte subpopulation did not move into the CNS. While HPC reduced infarct volumes by 27% (p < 0.01) in wild-type mice, CCL2-null mice subjected to tMCAo were not protected by HPC. Moreover, administration of a CCL2 immunoneutralizing antibody prior to HPC completely blocked (p < 0.0001 vs. HPC-treated mice) the development of ischemic tolerance. CONCLUSIONS: The early expression of CCL2 in neurons, the delayed expression of CCL2 in cerebral endothelial cells, and CCL2-mediated actions on circulating CCR2+ monocytes, appear to be required to establish ischemic tolerance to focal stroke in response to HPC, and thus represent a novel role for this chemokine in endogenous neurovascular protection.


Assuntos
Infarto Encefálico/etiologia , Infarto Encefálico/prevenção & controle , Quimiocina CCL2/metabolismo , Infarto da Artéria Cerebral Média/complicações , Precondicionamento Isquêmico/métodos , Regulação para Cima/fisiologia , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Quimiocina CCL2/deficiência , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imunoglobulina G/uso terapêutico , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/fisiologia , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Fosfopiruvato Hidratase/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , RNA Mensageiro/genética , Receptores CCR2/genética , Receptores CCR2/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...