Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 28(7): 2171-2178, 2017 Jul 18.
Artigo em Chinês | MEDLINE | ID: mdl-29741047

RESUMO

The stable hydrogen and oxygen isotopes are environmental isotopes, which widely exist in various kinds of water. Their relative abundance variation in water can indicate the water circulation and mechanism of water use in plant. This research selected two major kinds of greening tree species, evergreen coniferous Platycladus orientalis and deciduous broad-leaved Quercus variabilis, in Beijing mountainous area, and the water movement process in soil-plant-atmosphere continuum was investigated by the variation characteristics analysis of stable hydrogen and oxygen isotope compositions in precipitation, soil water, groundwater, plant stem water and leaf water. The results showed that the meteoric water line equation of the study area was δD=7.17δ18O+1.45 (R2=0.93), and the soil evaporation line equation was δD=3.85δ18O+1.45 (R2=0.76). A certain degree of evaporation fractionation existed in the processes of rainfall infiltration into soil water. In different seasons, the δD and δ18O values of precipitation, soil water and spring water had different variation regularity. In rainy season, the mean δD and δ18O values were in order of precipitation> spring water>soil water, with the precipitation and soil water supplied spring water together; in dry season, the order was precipitation > soil water > spring water, and the precipitation and spring water both contributed to soil water. The δD and δ18O fitting line equations of stem water of P. orienta-lis and Q. variabilis were respectively δD=5.03δ18O-30.78 and δD=3.0δ18O-48.92. The uptake water of Q. variabilis was more enriched than that of P. orientalis, and the depth of Q. variabilis water uptake in soil profile was shallower than P. orientalis. The leaf water isotopic variation of Q. varia-bilis was more sensitive to atmospheric environment, with the kinetic isotopic fractionation of Q. variabilis being more enriched than that of P. orientalis, but they had the same response to variation of environmental condition.


Assuntos
Hidrogênio , Solo , Pequim , China , Isótopos de Oxigênio
2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(12): 3371-4, 2011 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-22295797

RESUMO

In the present paper, the concentrations of fourteen heavy metals (Fe, Al, Ti, Cu, Cr, Mn, V, Zn, Ni, Co, Pb, Se, Cd and As) were determined by ICP-AES and atomic absorption spectroscopy along an elevation gradient of montane forest. The results show that the elevation gradient had significant effects on the concentrations of Fe, Al, Ti, V, Pb and As. And the concentrations of Cu, Cr, Mn, Zn, Ni, Co, Se and Cd were not significantly affected by the elevation gradient. Because the studying area is red soil, the elevation gradient had significant effects on the concentrations of Fe, Al and Ti which are characteristic heavy metals of red soil, suggesting that the red soil at different elevations has different intensities of weathering desilication and bioaccumulation. Other heavy metals have different relationships with the elevation gradient, such as the concentrations of Cr, Zn and Cd were high at relatively high elevation and Pb and As were high at relatively low elevation. These results suggest that the different elevations of montane forest soils were polluted by differently types of heavy metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA