Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Biochem Genet ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536568

RESUMO

Cancer-associated fibroblasts (CAFs) are an important component of the stroma. Studies showed that CAFs were pivotally in glioma progression which have long been considered a promising therapeutic target. Therefore, the identification of prognostic CAF markers might facilitate the development of novel diagnostic and therapeutic approaches. A total of 1333 glioma samples were obtained from the TCGA and CGGA datasets. The EPIC, MCP-counter, and xCell algorithms were used to evaluate the relative proportion of CAFs in glioma. CAF markers were identified by the single-cell RNA-seq datasets (GSE141383) from the Tumor Immune Single-Cell Hub database. Unsupervised consensus clustering was used to divide the glioma patients into different distinct subgroups. The least absolute shrinkage and selection operator regression model was utilized to establish a CAF-related signature (CRS). Finally, the prognostic CAF markers were further validated in clinical specimens by RT‒qPCR. Combined single-cell RNA-seq analysis and differential expression analysis of samples with high and low proportions of CAFs revealed 23 prognostic CAF markers. By using unsupervised consensus clustering, glioma patients were divided into two distinct subtypes. Subsequently, based on 18 differentially expressed prognostic CAF markers between the two CAF subtypes, we developed and validated a new CRS model (including PCOLCE, TIMP1, and CLIC1). The nomogram and calibration curves indicated that the CRS was an accurate prognostic marker for glioma. In addition, patients in the high-CRS score group had higher immune infiltration and tumor mutation burden levels. Moreover, the CRS score had the potential to predict the response to immune checkpoint blockade (ICB) therapy and chemotherapy. Finally, the expression profiles of three CAF markers were verified by RT‒qPCR. In general, our study classified glioma patients into distinct subgroups based on CAF markers, which will facilitate the development of individualized therapy. We also provided insights into the role of the CRS in predicting the response to ICB and chemotherapy in glioma patients.

2.
Cell Commun Signal ; 22(1): 50, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233928

RESUMO

AIMS: Neutrophil extracellular traps (NETs) have been implicated in thrombotic diseases. There is no definitive explanation for how NETs form during acute ischemic strokes (AIS). The purpose of our study was to investigate the potential mechanism and role of NETs formation in the AIS process. METHODS: As well as 45 healthy subjects, 45 patients with AIS had ELISA tests performed to detect NET markers. Expression of high-mobility group box 1 (HMGB1) on platelet microvesicles (PMVs) was analyzed by flow cytometry in healthy subjects and AIS patients' blood samples. We established middle cerebral artery occlusion (MCAO) mice model to elucidate the interaction between PMPs and NETs. RESULTS: A significant elevation in NET markers was found in patient plasma in AIS patients, and neutrophils generated more NETs from patients' neutrophils. HMGB1 expression was upregulated on PMVs from AIS patients and induced NET formation. NETs enhanced Procoagulant activity (PCA) through tissue factor and via platelet activation. Targeting lactadherin in genetical and in pharmacology could regulate the formation of NETs in MCAO model. CONCLUSIONS: NETs mediated by PMVs derived HMGB1 exacerbate thrombosis and brain injury in AIS. Video Abstract.


Assuntos
Lesões Encefálicas , Armadilhas Extracelulares , Proteína HMGB1 , AVC Isquêmico , Trombose , Animais , Camundongos , Humanos , Armadilhas Extracelulares/metabolismo , Proteína HMGB1/metabolismo , Trombose/metabolismo , Neutrófilos , Lesões Encefálicas/metabolismo
3.
J Transl Med ; 21(1): 533, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553713

RESUMO

BACKGROUND: Accurately predicting the outcome of isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) remains hitherto challenging. This study aims to Construct and Validate a Robust Prognostic Model for IDH wild-type GBM (COVPRIG) for the prediction of overall survival using a novel metric, gene-gene (G × G) interaction, and explore molecular and cellular underpinnings. METHODS: Univariate and multivariate Cox regression of four independent trans-ethnic cohorts containing a total of 800 samples. Prediction efficacy was comprehensively evaluated and compared with previous models by a systematic literature review. The molecular underpinnings of COVPRIG were elucidated by integrated analysis of bulk-tumor and single-cell based datasets. RESULTS: Using a Cox-ph model-based method, six of the 93,961 G × G interactions were screened to form an optimal combination which, together with age, comprised the COVPRIG model. COVPRIG was designed for RNA-seq and microarray, respectively, and effectively identified patients at high risk of mortality. The predictive performance of COVPRIG was satisfactory, with area under the curve (AUC) ranging from 0.56 (CGGA693, RNA-seq, 6-month survival) to 0.79 (TCGA RNAseq, 18-month survival), which can be further validated by decision curves. Nomograms were constructed for individual risk prediction for RNA-seq and microarray-based cohorts, respectively. Besides, the prognostic significance of COVPRIG was also validated in GBM including the IDH mutant samples. Notably, COVPRIG was comprehensively evaluated and externally validated, and a systemic review disclosed that COVPRIG outperformed current validated models with an integrated discrimination improvement (IDI) of 6-16%. Moreover, integrative bioinformatics analysis predicted an essential role of METTL1+ neural-progenitor-like (NPC-like) malignant cell in driving unfavorable outcome. CONCLUSION: This study provided a powerful tool for the outcome prediction for IDH wild-type GBM, and preliminary molecular underpinnings for future research.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Prognóstico , Nomogramas , Metiltransferases
4.
Front Med (Lausanne) ; 10: 1171819, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534312

RESUMO

Background: Photodynamic therapy (PDT) promotes significant tumor regression and extends the lifetime of patients. The actual operation of PDT often relies on the subjective judgment of experienced neurosurgeons. Patients can benefit more from precisely targeting PDT's key operating zones. Methods: We used magnetic resonance imaging scans and created 3D digital models of patient anatomy. Multiple images are aligned and merged in STL format. Neurosurgeons use HoloLens to import reconstructions and assist in PDT execution. Also, immunohistochemistry was used to explore the association of hyperperfusion sites in PDT of glioma with patient survival. Results: We constructed satisfactory 3D visualization of glioma models and accurately localized the hyperperfused areas of the tumor. Tumor tissue taken in these areas was rich in CD31, VEGFA and EGFR that were associated with poor prognosis in glioma patients. We report the first study using MR technology combined with PDT in the treatment of glioma. Based on this model, neurosurgeons can focus PDT on the hyperperfused area of the glioma. A direct benefit was expected for the patients in this treatment. Conclusion: Using the Mixed Reality technique combines multimodal imaging signatures to adjuvant glioma PDT can better exploit the vascular sealing effect of PDT on glioma.

5.
Funct Integr Genomics ; 23(3): 286, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650991

RESUMO

BACKGROUND: Glioblastoma (GBM) is an aggressive and unstoppable malignancy. Natural killer T (NKT) cells, characterized by specific markers, play pivotal roles in many tumor-associated pathophysiological processes. Therefore, investigating the functions and complex interactions of NKT cells is great interest for exploring GBM. METHODS: We acquired a single-cell RNA-sequencing (scRNA-seq) dataset of GBM from Gene Expression Omnibus (GEO) database. The weighted correlation network analysis (WGCNA) was employed to further screen genes subpopulations. Subsequently, we integrated the GBM cohorts from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases to describe different subtypes by consensus clustering and developed a prognostic model by least absolute selection and shrinkage operator (LASSO) and multivariate Cox regression analysis. We further investigated differences in survival rates and clinical characteristics among different risk groups. Furthermore, a nomogram was developed by combining riskscore with the clinical characteristics. We investigated the abundance of immune cells in the tumor microenvironment (TME) by CIBERSORT and single sample gene set enrichment analysis (ssGSEA) algorithms. Immunotherapy efficacy assessment was done with the assistance of Tumor Immune Dysfunction and Exclusion (TIDE) and The Cancer Immunome Atlas (TCIA) databases. Real-time quantitative polymerase chain reaction (RT-qPCR) experiments and immunohistochemical profiles of tissues were utilized to validate model genes. RESULTS: We identified 945 NKT cells marker genes from scRNA-seq data. Through further screening, 107 genes were accurately identified, of which 15 were significantly correlated with prognosis. We distinguished GBM samples into two distinct subtypes and successfully developed a robust prognostic prediction model. Survival analysis indicated that high expression of NKT cell marker genes was significantly associated with poor prognosis in GBM patients. Riskscore can be used as an independent prognostic factor. The nomogram was demonstrated remarkable utility in aiding clinical decision making. Tumor immune microenvironment analysis revealed significant differences of immune infiltration characteristics between different risk groups. In addition, the expression levels of immune checkpoint-associated genes were consistently elevated in the high-risk group, suggesting more prominent immune escape but also a stronger response to immune checkpoint inhibitors. CONCLUSIONS: By integrating scRNA-seq and bulk RNA-seq data analysis, we successfully developed a prognostic prediction model that incorporates two pivotal NKT cells marker genes, namely, CD44 and TNFSF14. This model has exhibited outstanding performance in assessing the prognosis of GBM patients. Furthermore, we conducted a preliminary investigation into the immune microenvironment across various risk groups that contributes to uncover promising immunotherapeutic targets specific to GBM.


Assuntos
Glioblastoma , Células T Matadoras Naturais , Humanos , Glioblastoma/genética , Prognóstico , Sequência de Bases , RNA-Seq , Microambiente Tumoral/genética
6.
Front Mol Neurosci ; 16: 1117237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465363

RESUMO

Intra-tumoral necrosis (ITN) is reported to be an independent prognostic factor in glioma. However, knowledge of ITN is mainly limited to pseudopalisadwe, while its other aspects were neglected. Therefore, a deeper understanding of ITN could be valuable for understanding its exact role in glioma. The only reliable ITN model was time-dependently achieved with the GL261 syngeneic mouse model. The ITN-associated expression pattern was enriched from RNA sequencing. TCGA glioma samples were clustered into a high-expression group (HEG) and a low-expression group (LEG) based on their pattern and their association with prognosis, clinical status, immune status, and therapeutic responsiveness were compared. Mouse glioma with ITN demonstrated invasive histology. Cytokine signaling was significantly enriched in necrotic mouse glioma compared with non-necrotic glioma tissues. Nine pro-inflammatory (IL6, PPBP, IL1A, TNFSF11, CXCL11, CXCL9, CXCL10, CXCL3, and CCL8) and two anti-inflammatory cytokine (IL1RN and IL10) genes were found to be related to ITN-associated cytokine patterns. Comparative analysis showed that HEG had a significantly shorter survival time, five differentially distributed clinical statuses, more infiltrated immune cells, greater expression of immune checkpoints, and better therapeutic responsiveness than LEG. In conclusion, the ITN-associated cytokine pattern is characteristically expressed in glioma with ITN and might indicate necrosis missed in histology diagnosis. Its expression pattern could predict the prognosis, tumor grade, immune status, and therapeutic responsiveness of glioma patients.

7.
Front Pharmacol ; 14: 1170240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351504

RESUMO

Necroptosis is a programmed form of necrotic cell death that serves as a host gatekeeper for defense against invasion by certain pathogens. Previous studies have uncovered the essential role of necroptosis in tumor progression and implied the potential for novel therapies targeting necroptosis. However, no comprehensive analysis of multi-omics data has been conducted to better understand the relationship between necroptosis and tumor. We developed the necroptosis index (NI) to uncover the effect of necroptosis in most cancers. NI not only correlated with clinical characteristics of multiple tumors, but also could influence drug sensitivity in glioma. Based on necroptosis-related differentially expressed genes, the consensus clustering was used to classify glioma patients into two NI subgroups. Then, we revealed NI subgroup I were more sensitive to immunotherapy, particularly anti-PD1 therapy. This new NI-based classification may have prospective predictive factors for prognosis and guide physicians in prioritizing immunotherapy for potential responders.

8.
JCI Insight ; 8(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36802340

RESUMO

Coagulopathy contributes to the majority of deaths and disabilities associated with traumatic brain injury (TBI). Whether neutrophil extracellular traps (NETs) contribute to an abnormal coagulation state in the acute phase of TBI remains unknown. Our objectives were to demonstrate the definitive role of NETs in coagulopathy in TBI. We detected NET markers in 128 TBI patients and 34 healthy individuals. Neutrophil-platelet aggregates were detected in blood samples from TBI patients and healthy individuals using flow cytometry and staining for CD41 and CD66b. Endothelial cells were incubated with isolated NETs and we detected the expression of vascular endothelial cadherin, syndecan-1, thrombomodulin, von Willebrand factor, phosphatidylserine, and tissue factor. In addition, we established a TBI mouse model to determine the potential role of NETs in TBI-associated coagulopathy. NET generation was mediated by high mobility group box 1 (HMGB1) from activated platelets and contributed to procoagulant activity in TBI. Furthermore, coculture experiments indicated that NETs damaged the endothelial barrier and caused these cells to assume a procoagulant phenotype. Moreover, the administration of DNase I before or after brain trauma markedly reduced coagulopathy and improved the survival and clinical outcome of mice with TBI.


Assuntos
Transtornos da Coagulação Sanguínea , Lesões Encefálicas Traumáticas , Armadilhas Extracelulares , Animais , Camundongos , Armadilhas Extracelulares/metabolismo , Células Endoteliais , Transtornos da Coagulação Sanguínea/etiologia , Neutrófilos/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo
9.
Front Oncol ; 13: 935944, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761958

RESUMO

Extra-neural spread of glioblastoma (GBM) is extremely rare. We report a case of postoperative intracranial GBM spreading to the subcutaneous tissue via the channel of craniotomy defect in a 73-year-old woman. Radiological images and histopathology indicate that the tumor microenvironment of the subcutaneous tumor is clearly different from the intracranial tumor. We also model the invasion of GBM cells through the dura-skull defect in mouse. The retrospective analysis of GBM with scalp metastases suggests that craniectomy is a direct cause of subcutaneous metastasis in patients with GBM. Imaging examinations of other sites for systemic screening is also recommended to look for metastases outside the brain when GBM invades the scalp or metastasizes to it.

10.
Front Neurol ; 13: 982928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425801

RESUMO

Objective: We developed and validated a clinical-radiomics nomogram to predict the prognosis of basal ganglia hemorrhage patients. Methods: Retrospective analyses were conducted in 197 patients with basal ganglia hemorrhage (training cohort: n = 136, test cohort: n = 61) who were admitted to The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital) and underwent computed tomography (CT) scan. According to different prognoses, patients with basal ganglia hemorrhage were divided into two groups. Independent clinical risk factors were derived with univariate and multivariate regression analysis. Radiomics signatures were obtained using least absolute shrinkage and selection operator. A radiomics score (Rad-score) was generated by 12 radiomics signatures of perihematomal edema (PHE) from CT images that were correlated with the prognosis of basal ganglia hemorrhage patients. A clinical-radiomics nomogram was conducted by combing the Rad-score and clinical risk factors using logistic regression analysis. The prediction performance of the nomogram was tested in the training cohort and verified in the test cohort. Results: The clinical model conducted by four clinical risk factors and 12 radiomcis features were used to establish the Rad-score. The clinical-radiomics nomogram outperformed the clinical model in the training cohort [area under the curve (AUC), 0.92 vs. 0.85] and the test cohort (AUC, 0.91 vs 0.85). The clinical-radiomics nomogram showed good calibration and clinical benefit in both the training and test cohorts. Conclusion: Radiomics features of PHE in patients with basal ganglia hemorrhage could contribute to the outcome prediction. The clinical-radiomics nomogram may help first-line clinicians to make individual clinical treatment decisions for patients with basal ganglia hemorrhage.

11.
Thromb Res ; 219: 1-13, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36084517

RESUMO

Neutrophil extracellular traps (NETs) are known to play a role in various diseases affecting coagulation. As of now, it is unclear whether NETs are present in hematoma samples collected from patients who have suffered an intracranial hemorrhage (ICH). The objective of this was to determine whether NETs are present in circulation and hematoma samples from ICH patients and to evaluate the procoagulant activity (PCA) of NETs during the ICH process. The expression of NET markers in samples from 78 ICH patients and 35 healthy donners was detected by ELISA and flow cytometry. Immunostaining for neutrophil markers (neutrophil CD66b) and NET markers (citrullinated histone H3 [H3Cit] and extracellular DNA) was performed on hematoma samples obtained from ICH patients undergoing intracranial hematoma evacuation. Our findings suggest that plasma and hematoma samples from patients with ICH showed high levels of NETs. Furthermore, using DNase I to target NETs enhanced ex vivo hematoma lysis. In conclusion, NETs play an important role in the ICH process and may be a novel therapeutic target for treatment of ICH patients.


Assuntos
Armadilhas Extracelulares , Biomarcadores/metabolismo , Hemorragia Cerebral/metabolismo , DNA , Desoxirribonuclease I/metabolismo , Armadilhas Extracelulares/metabolismo , Hematoma/metabolismo , Histonas/metabolismo , Humanos , Neutrófilos/metabolismo
12.
Front Mol Biosci ; 9: 966843, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060266

RESUMO

Cuproptosis is a new type of cell death that is associated with mitochondrial respiration of the tricarboxylic acid cycle. Previous studies showed that long non-coding RNAs (lncRNAs) regulated low-grade glioma (LGG) progression. However, the potential applications of cuproptosis-related lncRNAs (CRLs) in LGG were not explored. A comprehensive analysis was performed in The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) cohorts. We first screened two distinct cuproptosis subtypes based on prognostic CRLs using consensus clustering. To facilitate individualized survival prediction in LGG, we constructed a prognostic signature (including CRNDE, HAR1A, and FAM181A-AS1) in the TCGA dataset. The prognostic signature exhibited excellent predictive ability and reliability, which was validated in the CGGA_325 and CGGA_693 datasets. Notably, patients in the high-risk group had increased immune cell infiltration and expression of immune checkpoints, which indicated that they may benefit more from immune checkpoint blockade (ICB) therapy. Finally, the prognostic signature screened the population with sensitivity to chemotherapy and ICB therapy. In summary, this study initially explored the mechanism of CRLs in LGG and provides some insights into chemotherapy and ICB therapy of LGG.

13.
Front Immunol ; 13: 970702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159811

RESUMO

The pathological implications of tumor-associated macrophages in the glioma microenvironment have been highlighted, while there lacks a gene signature to characterize the functional status and clinical implications of these cells. Comprehensive bioinformatics approaches were employed to develop an M2 macrophage-associated gene signature at bulk-tumor and single-cell levels and explore immunological and metabolic features. Consequently, the PI3K pathway and fatty acid metabolism were correlated with the M2 fraction. Further distilling the pathway members resulted in a leukotriene synthesis-related gene signature (Macro index), including PIK3R5, PIK3R6, ALOX5, ALOX5AP, and ALOX15B, that was primarily expressed by monocytes/macrophages. Increased Macro index predicted IL13-induced macrophages, and was associated with T-cell dysfunction at both transcriptional and epigenetic levels and predicted an unfavorable outcome. Besides, the Macro index was proportional with PAI1 at the protein level, with high levels of the latter suggesting a decreased progression-free interval of glioblastoma. Notably, the monocytes/macrophages in the glioma environment contribute to the expression of immune checkpoints and the Macro index predicts glioma responsiveness to anti-PD1 treatment. Together, our study proposed a leukotriene synthesis-related M2 macrophage gene signature, which may provide insights into the role of these cells in the glioma microenvironment and facilitate individually tailored therapeutic strategies for the disease.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/patologia , Epigênese Genética , Ácidos Graxos/metabolismo , Genômica , Glioma/genética , Glioma/metabolismo , Glioma/terapia , Humanos , Interleucina-13/metabolismo , Leucotrienos/metabolismo , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Transcriptoma , Microambiente Tumoral/genética
14.
Front Mol Biosci ; 9: 942966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090045

RESUMO

Epithelial-mesenchymal transition (EMT) confers high invasive and migratory capacity to cancer cells, which limits the effectiveness of tumor therapy. Long non-coding RNAs (lncRNAs) can regulate the dynamic process of EMT at different levels through various complex regulatory networks. We aimed to comprehensively analyze and screen EMT-related lncRNAs to characterize lower-grade glioma (LGG) tumor biology and provide new ideas for current therapeutic approaches. We retrieved 1065 LGG samples from the Cancer Genome Atlas and Chinese Glioma Genome Atlas by machine learning algorithms, identified three hub lncRNAs including CRNDE, LINC00665, and NEAT1, and established an EMT-related lncRNA signature (EMTrLS). This novel signature had strong prognostic value and potential clinical significance. EMTrLS described LGG genomic alterations and clinical features including gene mutations, tumor mutational burden, World Health Organization (WHO) grade, IDH status, and 1p/19q status. Notably, stratified analysis revealed activation of malignancy-related and metabolic pathways in the EMTrLS-high cohort. Moreover, the population with increased EMTrLS scores had increased cells with immune killing function. However, this antitumor immune function may be suppressed by increased Tregs and macrophages. Meanwhile, the relatively high expression of immune checkpoints explained the immunosuppressive state of patients with high EMTrLS scores. Importantly, we validated this result by quantifying the course of antitumor immunity. In particular, EMTrLS stratification enabled assessment of the responsiveness of LGG to chemotherapeutic drug efficacy and PD1 blockade. In conclusion, our findings complement the foundation of molecular studies of LGG, provide valuable insight into our understanding of EMT-related lncRNAs, and offer new strategies for LGG therapy.

15.
Front Immunol ; 13: 941556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177003

RESUMO

This study aims to construct a Macrophage-Related Gene Prognostic Index (MRGPI) for glioblastoma (GBM) and explore the underlying molecular, metabolic, and immunological features. Based on the GBM dataset from The Cancer Genome Atlas (n = 156), 13 macrophage-related hub genes were identified by weighted gene co-expression network (WGCNA) analysis. 5 prognostic genes screened by Kaplan-Meire (K-M) analysis and Cox regression model were used to construct the MRGPI, including GPR84, NCF2, HK3, LILRB2, and CCL18. Multivariate Cox regression analysis found that the MRGPI was an independent risk factor (HR = 2.81, CI95: 1.13-6.98, p = 0.026), leading to an unfavorable outcome for the MRGPI-high group, which was further validated by 4 validation GBM cohorts (n = 728). Thereafter, the molecular, metabolic, and immune features and the clinical implications of the MRGPI-based groups were comprehensively characterized. Gene set enrichment analysis (GSEA) found that immune-related pathways, including inflammatory and adaptive immune response, and activated eicosanoid metabolic pathways were enriched in the MRGPI-high group. Besides, genes constituting the MRGPI was primarily expressed by monocytes and macrophages at single-cell scope and was associated with the alternative activation of macrophages. Moreover, correlation analysis and receiver operating characteristic (ROC) curves revealed the relevance between the MRGPI with the expression of immune checkpoints and T cell dysfunction. Thus, the responsiveness of samples in the MRGPI-high group to immune checkpoint inhibitors (ICI) was detected by algorithms, including Tumor Immune Dysfunction and Exclusion (TIDE) and Submap. In contrast, the MRGPI-low group had favorable outcome, was less immune active and insensitive to ICI. Together, we have developed a promising biomarker to classify the prognosis, metabolic and immune features for GBM, and provide references for facilitating the personalized application of ICI in GBM.


Assuntos
Glioblastoma , Glioblastoma/patologia , Humanos , Inibidores de Checkpoint Imunológico , Macrófagos , Prognóstico , Linfócitos T/metabolismo
16.
J Photochem Photobiol B ; 234: 112537, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35939916

RESUMO

BACKGROUND: photodynamics therapy (PDT) induces tumor cell death through oxidative stress and is closely associated with the expression of hypoxia inducible factor-1a (HIF1a), which activates multiple downstream survival signaling pathways. Therefore, the purpose of this study was to investigate the expression levels of HIF1a proteins in PDT-treated GBM cells and to determine whether inhibition of HIF1a reduces survival signals to enhance the efficacy of PDT. RESULTS: PDT combined with Acriflavine (ACF, PA) decreased the expression of HIF1a and regulated the downstream expression of GLUT-1, GLUT-3, HK2 and other gluconeogenic pathway proteins. PA group significantly suppressed tumor growth to improve the efficacy of PDT. METHODS: We first performed the correlation of HIF1a, GLUT-1, GLUT-3, and HK2, and quantified the expression of HIF1a on tumor grades and IDH mutation classification by TCGA and CGGA databases. Then, we used immunohistochemistry method to detect four gene expression levels in human GBM tissues. Besides, we examined the effects of different treatments on the proliferation, migration and invasion ability of GBM cell lines by CCK8, wound healing and transwell assays. ACF, a HIF1a/HIF1ß dimerization inhibitor, was used to evaluate its adjuvant effect on the efficacy of PDT. CONCLUSION: HIF1a is activated in GBM cell lines and contributes to the survival of tumor cells after PDT in vitro and in vivo. PA group inhibited HIF1a expression and improved PDT efficacy in the treatment of recalcitrant GBM.


Assuntos
Glioblastoma , Fotoquimioterapia , Acriflavina/farmacologia , Acriflavina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/tratamento farmacológico , Humanos , Fator 1 Induzível por Hipóxia/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Transdução de Sinais
17.
Front Endocrinol (Lausanne) ; 13: 943300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992105

RESUMO

Background: The IGFBP family of insulin-like growth factor binding proteins has important biological functions in the organism. However, the role of the IGFBP family in low-grade glioma (LGG) has not been fully explored. Methods: We validated the clinical value of the IGFBP family using RNA-seq and clinical data of LGG in the TCGA and constructed an IGFBPScore using LASSO-regression analysis for prognosis prediction, subtype determination, and treatment sensitivity determination. Subsequently, we explored the role of the IGFBP family in the development of LGG using PanCanAtlas data. Results: Our results suggest that most IGFBP family members were aberrantly expressed and were strongly associated with poor prognosis in LGG. By constructing an IGFBPScore representing the IGFBP family, we found that tumor samples with a high IGFBPScore had a glioblastoma-like mutation pattern characterized by IDH1wt, EGFRmut, PTENmut, and NF1mut with hypo-methylation and glioma stem cell (GSC) diversity. In contrast, the low IGFBPScore group was characterized by IDH1mut accompanied by TP53mut, CICmut, and ATRXmut, and had hyper-methylation status as well as the GSC restriction. Additionally, the high-IGFBPScore group had a high inflammation phenotype with increased immune antigenicity and increased infiltration of immune molecules and cells, as well as a high extracellular matrix phenotype and enhanced multiple metabolic pathways compared with the immune-quiet phenotype of the low-IGFBPScore group, which was strongly associated with poor prognosis. Conclusion: Our study provides a summary analysis and a theoretical basis for the biological role and clinical value of the IGFBP family in LGG, providing an important therapeutic target for LGG.


Assuntos
Glioma , Matriz Extracelular/metabolismo , Glioma/metabolismo , Humanos , Inflamação/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Prognóstico
18.
Front Genet ; 13: 874896, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865011

RESUMO

Background: Lower-grade gliomas (LGGs) carry a high risk of malignant transformation, leading to severe neurologic deterioration and ultimately, death. The tumor microenvironment (TME) plays an essential role in tumor maintenance, progression, and immunotherapy resistance. Therefore, the LGG TME deserves comprehensive exploration for a novel therapeutic target. Methods: The ESTIMATE algorithm was used to estimate infiltrating stromal and immune cells of LGG patients obtained from the Cancer Genome Atlas (TCGA) database. Kaplan-Meier analysis was performed to classify survival differences. TME-related differentially expressed genes were identified between the low- and high-immune/stromal groups. Hub genes were screened by constructing protein-protein interaction networks and performing the Cox regression analysis. Differential analysis, survival analysis, gene set enrichment analysis, and clinical relevance analysis specific to hub genes were evaluated by using the TCGA and the Chinese Glioma Genome Atlas datasets, and the results were validated by qRT-PCR, Western blotting, and immunohistochemistry in tissues from LGG patients. Results: The immune and stromal components in TME were negatively related to patient prognosis. Differentially expressed genes sharing immune score and stromal score were mainly involved in the immune response. C-C chemokine receptor type 5 (CCR5), as only a hub gene, was significantly higher in LGG patients than normal patients and negatively correlated with the prognosis of patients. High-expression CCR5 was positively related to immune-related and tumor progression pathways. CCR5 protein expression was higher in LGG with isocitrate dehydrogenase wildtype. Validated results showed that CCR5 was upregulated in LGG tissues at mRNA and protein levels and could affect immune cell infiltration. These results suggested that CCR5 was a potential indicator for the status of TME. Conclusion: Glioma cells remodel the immune microenvironment through the high expression of CCR5 and lead to a poor prognosis in patients with LGG. The inhibition of CCR5 may contribute to the efficacy of LGG immunotherapy.

19.
Cell Biosci ; 12(1): 114, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869501

RESUMO

BACKGROUND: Neutrophil extracellular traps (NETs) contribute to the creation of a coagulation state in various diseases. Currently, it is not clear whether NETs are present in the thrombi and plasma of patients with cerebral venous sinus thrombosis (CVST). This study aimed to investigate the presence of NETs in thrombi and blood samples from CVST patients and the procoagulant activity (PCA) of NETs during the progression of CVST. RESULTS: Thrombi obtained from CVST patients undergoing thrombectomy were examined by immunochemistry using neutrophil elastase (NE), CD66b and citrullinated histone H3(citH3). The presence of NET markers in samples from 37 CVST patients and 32 healthy people was evaluated by ELISA. NET-producing neutrophils and neutrophil-platelet (PLT) aggregates were examined in samples obtained from CVST patients and healthy people by flow cytometry. The TAT complex in plasma sample from each group was detected by ELISA to evaluate the procoagulant activity of NETs in CVST patients. Neutrophils from healthy subjects were treated with PLT-rich plasma in the presence of anti-PF4 antibodies or an autophagy inhibitor and analyzed by flow cytometry and confocal microscopy. After treatment with NETs, the expression of von Willebrand factor (VWF), tissue factor (TF) and CD31 in human brain microvascular endothelial cells (HBMECs) was measured by confocal microscopy and western blotting. Our results showed that NETs were abundant in the plasma and thrombi from CVST patients. Platelet factor 4 (PF4) from CVST PLTs induced NET generation through autophagy. NETs could induce PCA by modulating TF and phosphatidylserine (PS) in CVST. NETs also disrupted the endothelial barrier and transformed ECs into a procoagulant phenotype to exacerbate thrombogenicity. CONCLUSIONS: NET generation was mediated by PF4 from PLTs through autophagy and contribute to thrombosis in CVST patients.

20.
Front Cell Dev Biol ; 10: 887693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656554

RESUMO

The epithelial-mesenchymal transition (EMT) is an important process that drives progression, metastasis, and oncology treatment resistance in cancers. Also, the adjacent non-tumor tissue may affect the biological properties of cancers and have potential prognostic implications. Our study aimed to identify EMT-related genes in LGG samples, explore their impact on the biological properties of lower grade gliomas (LGG) through the multi-omics analysis, and reveal the potential mechanism by which adjacent non-tumor tissue participated in the malignant progression of LGG. Based on the 121 differentially expressed EMT-related genes between normal samples from the GTEx database and LGG samples in the TCGA cohort, we identified two subtypes and constructed EMTsig. Because of the genetic, epigenetic, and transcriptomic heterogeneity, malignant features including clinical traits, molecular traits, metabolism, anti-tumor immunity, and stemness features were different between samples with C1 and C2. In addition, EMTsig could also quantify the EMT levels, variation in prognosis, and oncology treatment sensitivity of LGG patients. Therefore, EMTsig could assist us in developing objective diagnostic tools and in optimizing therapeutic strategies for LGG patients. Notably, with the GSVA, we found that adjacent non-tumor tissue might participate in the progression, metastasis, and formation of the tumor microenvironment in LGG. Therefore, the potential prognostic implications of adjacent non-tumor tissue should be considered when performing clinical interventions for LGG patients. Overall, our study investigated and validated the effects of EMT-related genes on the biological properties from multiple perspectives, and provided new insights into the function of adjacent non-tumor tissue in the malignant progression of LGG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...