Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(44): 6730-6733, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37191241

RESUMO

Noble metal nanoporous materials hold great potential in the field of catalysis, owing to their high open structures and numerous low coordination surface sites. However, the formation of porous nanoparticles is restricted by particle size. Herein, we utilized a Pt1Bi2 intermetallic nanocatalyst to develop a dealloying approach for preparing nanoparticles with a bi-continuous porous and core-shell structure and proposed a mechanism for the formation of pores. The particle size used to form the porous structure can be <10 nm, which enhances the nanocatalyst's performance for the oxygen reduction reaction (ORR). This study provides a new understanding of the formation of porous materials via a dealloying approach.

2.
Talanta ; 215: 120896, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32312441

RESUMO

The fabrication of effective microchip liquid chromatography (LC) systems tends to be limited by the availability of suitable chromatographic columns. Herein, we developed a glass microchip LC system in which porous single-particle silica was adopted as frits and a freeze-thaw valve was utilized to achieve sample injection without interfering with sampling. The fabrication of single-particle-frit-based packed columns did not require an additional packing channel, thus avoiding dead volumes within the channel interface that can influence chromatographic separation. Further, the length of the packed column could be adjusted using the location of single-particle frits within the column channel. The fabricated frits exhibited high mechanical strength, good permeability, and tolerance for high pressures during chromatographic separation. In particular, the developed microchip LC system was able to withstand high separation pressures of more than 5000 psi. The microchip LC system was applied to the separation of neurotransmitters. Three different monoamine neurotransmitters were completely separated within 5 min with theoretical plate numbers on the order of 100,000 plates m-1. The microchip LC system has a potential for application in a variety of fields including environmental analysis, food safety, drug analysis, and biomedicine.


Assuntos
Análise em Microsséries , Neurotransmissores/análise , Cromatografia Líquida/instrumentação , Voluntários Saudáveis , Humanos , Tamanho da Partícula , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA