Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38606478

RESUMO

Lipid droplets (LDs) are dynamic organelles that store neutral lipids and are closely linked to obesity. Previous studies have suggested that Lycium barbarum polysaccharide (LBP) supplements can ameliorate obesity, but the underlying mechanisms remain unclear. In this study, we hypothesize that LBP alleviates LD accumulation in adipose tissue (AT) by inhibiting fat-specific protein 27 (Fsp27) through an activating transcription factor-6 (ATF6)/small-molecule sirtuin 1 (SIRT1)-dependent mechanism. LD accumulation in AT is induced in high-fat diet (HFD)-fed mice, and differentiation of 3T3-L1 preadipocytes (PAs) is induced. The ability of LBP to alleviate LD accumulation and the possible underlying mechanism are then investigated both in vivo and in vitro. The influences of LBP on the expressions of LD-associated genes ( ATF6 and Fsp27) are also detected. The results show that HFD and PA differentiation markedly increase LD accumulation in ATs and adipocytes, respectively, and these effects are markedly suppressed by LBP supplementation. Furthermore, LBP significantly activates SIRT1 and decreases ATF6 and Fsp27 expressions. Interestingly, the inhibitory effects of LBP are either abolished or exacerbated when ATF6 is overexpressed or silenced, respectively. Furthermore, SIRT1 level is transcriptionally regulated by LBP through opposite actions mediated by ATF6. Collectively, our findings suggest that LBP supplementation alleviates obesity by ameliorating LD accumulation, which might be partially mediated by an ATF6/SIRT1-dependent mechanism.

2.
J Transl Med ; 21(1): 227, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978120

RESUMO

BACKGROUND: Mesenchymal stem cell (MSC) therapy has been shown to have some therapeutic effects in rodent models and patients with IBD; however, its role in colon tumor models is controversial. In this study, the potential role and mechanisms of bone marrow-derived MSCs (BM-MSCs) in colitis-associated colon cancer (CAC) were investigated. METHODS: The CAC mouse model was established with azoxymethane (AOM) and dextran sulfate sodium (DSS). The mice were administered an intraperitoneal injection of MSCs once weekly for different periods. The progression of CAC and the cytokine expression in tissues was assessed. Immunofluorescence staining was used to detect MSCs localization. Levels of immune cells in the spleen and lamina propria of the colon were detected using flow cytometry. A co-culture of MSCs and naïve T cells was performed to determine the effect of MSCs on naïve T cell differentiation. RESULTS: Early administration of MSCs inhibited the occurrence of CAC, while late administration promoted the progression of CAC. The inhibitory effect of early injection in mice was characterized by the expression of inflammatory cytokines in colon tissue was decreased, and induction of T regulatory cells (Tregs) infiltration via TGF-ß. The promotive effect of late injection was characterized by a shift of T helper (Th) 1/Th2 immune balance toward a Th2 phenotype through IL-4 secretion. IL-12 can reverse this shift to Th2 accumulation in mice. CONCLUSION: MSCs can curb the progression of colon cancer by inducing Treg accumulation via TGF-ß at the early stage of inflammatory transformation but promote the progression of colon cancer by inducing a shift in Th1/Th2 immune balance to Th2 through IL-4 secretion at the late stage. And the immune balance of Th1/Th2 influenced by MSCs could be reversed by IL-12.


Assuntos
Colite , Neoplasias do Colo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Camundongos , Animais , Interleucina-4/metabolismo , Neoplasias do Colo/patologia , Colo/patologia , Citocinas/metabolismo , Linfócitos T Reguladores , Interleucina-12/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
3.
Front Oncol ; 11: 792420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34988023

RESUMO

BACKGROUND AND STUDY AIMS: Previous studies have identified that colorectal cancer has different fucosylation levels compared to the normal colon. Ulex europaeus agglutinin-I (UEA-I), which specifically combines with α1-2 fucose glycan, is usually used to detect fucosylation levels. Therefore, we used confocal laser endomicroscopy (CLE) to investigate fluorescently labeled UEA-Fluorescein isothiocyanate (FITC) for detecting colonic cancer. PATIENTS AND METHODS: We stained frozen mouse colon tissue sections of normal, adenoma, and adenocarcinoma species with UEA-FITC to detect fucosylation levels in different groups. White light endoscopy and endocytoscopy were first used to detect the lesions. The UEA-FITC was then stained in the mice and human colon tissues in vitro. The CLE was used to detect the UEA-FITC levels of the corresponding lesions, and videos were recorded for quantitation analysis. The diagnostic accuracy of UEA-FITC using CLE was evaluated in terms of sensitivity and specificity. RESULTS: The UEA expression level in colorectal cancer was lower than that in normal intestinal epithelium. The fluorescence intensity ratio of UEA-FITC in colorectal cancer was significantly lower than that in normal tissue detected by CLE in both mice and humans. The combination of UEA-FITC and CLE presented a good diagnostic accuracy with a sensitivity of 95.6% and a specificity of 97.7% for detecting colorectal cancer. The positive and negative predictive values were 91.6% and 95.6%, respectively. Overall, 95.6% of the sites were correctly classified by CLE. CONCLUSIONS: We developed a new imaging strategy to improve the diagnostic efficacy of CLE by using UEA-FITC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...