Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(5): e0009324, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591899

RESUMO

Feline parvovirus (FPV) infection is highly fatal in felines. NS1, which is a key nonstructural protein of FPV, can inhibit host innate immunity and promote viral replication, which is the main reason for the severe pathogenicity of FPV. However, the mechanism by which the NS1 protein disrupts host immunity and regulates viral replication is still unclear. Here, we identified an FPV M1 strain that is regulated by the NS1 protein and has more pronounced suppression of innate immunity, resulting in robust replication. We found that the neutralization titer of the FPV M1 strain was significantly lower than that of the other strains. Moreover, FPV M1 had powerful replication ability, and the FPV M1-NS1 protein had heightened efficacy in repressing interferon-stimulated genes (ISGs) expression. Subsequently, we constructed an FPV reverse genetic system, which confirmed that the N588 residue of FPV M1-NS1 protein is a key amino acid that bolsters viral proliferation. Recombinant virus containing N588 also had stronger ability to inhibit ISGs, and lower ISGs levels promoted viral replication and reduced the neutralization titer of the positive control serum. Finally, we confirmed that the difference in viral replication was abolished in type I IFN receptor knockout cell lines. In conclusion, our results demonstrate that the N588 residue of the NS1 protein is a critical amino acid that promotes viral proliferation by increasing the inhibition of ISGs expression. These insights provide a reference for studying the relationship between parvovirus-mediated inhibition of host innate immunity and viral replication while facilitating improved FPV vaccine production.IMPORTANCEFPV infection is a viral infectious disease with the highest mortality rate in felines. A universal feature of parvovirus is its ability to inhibit host innate immunity, and its ability to suppress innate immunity is mainly accomplished by the NS1 protein. In the present study, FPV was used as a viral model to explore the mechanism by which the NS1 protein inhibits innate immunity and regulates viral replication. Studies have shown that the FPV-NS1 protein containing the N588 residue strongly inhibits the expression of host ISGs, thereby increasing the viral proliferation titer. In addition, the presence of the N588 residue can increase the proliferation titer of the strain 5- to 10-fold without affecting its virulence and immunogenicity. In conclusion, our findings provide new insights and guidance for studying the mechanisms by which parvoviruses suppress innate immunity and for developing high-yielding FPV vaccines.


Assuntos
Vírus da Panleucopenia Felina , Proteínas não Estruturais Virais , Replicação Viral , Animais , Gatos , Linhagem Celular , Vírus da Panleucopenia Felina/genética , Vírus da Panleucopenia Felina/imunologia , Imunidade Inata , Mutação , Infecções por Parvoviridae/virologia , Infecções por Parvoviridae/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/imunologia
2.
Vet Microbiol ; 290: 109978, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185071

RESUMO

Recently, herpesvirus viral vectors that stimulate strong humoral and cellular immunity have been demonstrated to be the most promising platforms for the development of multivalent vaccines, because they contain various nonessential genes and exhibit long-life latency characteristics. Previously, we showed that the feline herpesvirus-1 (FHV-1) mutant WH2020-ΔTK/gI/gE, which was safe for felines and provided efficacious protection against FHV-1 challenge, can be used as a vaccine vector. Moreover, previous studies have shown that the major neutralizing epitope VP2 protein of feline parvovirus (FPV) can elicit high levels of neutralizing antibodies. Therefore, to develop a bivalent vaccine against FPV and FHV-1, we first generated a novel recombinant virus by CRISPR/Cas9-mediated homologous recombination, WH2020-ΔTK/gI/gE-VP2, which expresses the VP2 protein of FPV. The growth characteristics of WH2020-ΔTK/gI/gE-VP2 were similar to those of WH2020-ΔTK/gI/gE, and WH2020-ΔTK/gI/gE-VP2 was stable for at least 30 generations in CRFK cells. As expected, we found that the felines immunized with WH2020-ΔTK/gI/gE-VP2 produced FPV-neutralizing antibody titers (27.5) above the positive cutoff (26) on day 14 after single inoculation. More importantly, recombinant WH2020-ΔTK/gI/gE-VP2 exhibited severely impaired pathogenicity in inoculated and cohabiting cats. The kittens immunized with WH2020-ΔTK/gI/gE and WH2020-ΔTK/gI/gE-VP2 produced similar levels of FHV-specific antibodies and IFN-ß. Furthermore, felines immunized with WH2020-ΔTK/gI/gE-VP2 were protected against challenge with FPV and FHV-1. These data showed that WH2020-ΔTK/gI/gE-VP2 appears to be a potentially safe, effective, and economical bivalent vaccine against FPV and FHV-1 and that WH2020-ΔTK/gI/gE can be used as a viral vector to develop feline multivalent vaccines.


Assuntos
Varicellovirus , Vacinas Virais , Animais , Gatos , Feminino , Vírus da Panleucopenia Felina/genética , Varicellovirus/genética , Anticorpos Neutralizantes , Vacinas Combinadas , Anticorpos Antivirais
3.
Antiviral Res ; 222: 105794, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38176470

RESUMO

A hyperinflammatory response is a prominent feature of feline infectious peritonitis (FIP), but the mechanisms behind the feline infectious peritonitis virus (FIPV)-induced cytokine storm in the host have not been clarified. Studies have shown that coronaviruses encode accessory proteins that are involved in viral replication and associated with viral virulence, the inflammatory response and immune regulation. Here, we found that FIPV ORF7a gene plays a key role in viral infection and host proinflammatory responses. The recombinant FIPV strains lacking ORF7a (rQS-79Δ7a) exhibit low replication rates in macrophages and do not induce dramatic upregulation of inflammatory factors. Furthermore, through animal experiments, we found that the rQS-79Δ7a strain is nonpathogenic and do not cause symptoms of FIP in cats. Unexpectedly, after three vaccinations with rQS-79Δ7a strain, humoral and cellular immunity was increased and provided protection against virulent strains in cats, and the protection rate reaches 40%. Importantly, our results demonstrated that ORF7a is a key virulence factor that exacerbates FIPV infection and inflammatory responses. Besides, our findings will provide novel implications for future development of live attenuated FIPV vaccines.


Assuntos
Infecções por Coronavirus , Coronavirus Felino , Peritonite Infecciosa Felina , Gatos , Animais , Coronavirus Felino/genética , Fatores de Virulência/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA