Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38257217

RESUMO

Accurate modeling of nonbonded interactions between protein kinases and their small molecule inhibitors is essential for structure-based drug design. Quantum chemical methods such as density functional theory (DFT) hold significant promise for quantifying the strengths of these key protein-ligand interactions. However, the accuracy of DFT methods can vary substantially depending on the choice of exchange-correlation functionals and associated basis sets. In this study, a comprehensive benchmarking of nine widely used DFT methods was carried out to identify an optimal approach for quantitative modeling of nonbonded interactions, balancing both accuracy and computational efficiency. From a database of 2139 kinase-inhibitor crystal structures, a diverse library of 49 nonbonded interaction motifs was extracted, encompassing CH-π, π-π stacking, cation-π, hydrogen bonding, and salt bridge interactions. The strengths of nonbonded interaction energies for all 49 motifs were calculated at the advanced CCSD(T)/CBS level of theory, which serve as references for a systematic benchmarking of BLYP, TPSS, B97, ωB97X, B3LYP, M062X, PW6B95, B2PLYP, and PWPB95 functionals with D3BJ dispersion correction alongside def2-SVP, def2-TZVP, and def2-QZVP basis sets. The RI, RIJK, and RIJCOSX approximations were used for selected functionals. It was found that the B3LYP/def2-TZVP and RIJK RI-B2PLYP/def2-QZVP methods delivered the best combination of accuracy and computational efficiency, making them well-suited for efficient modeling of nonbonded interactions responsible for molecular recognition of protein kinase inhibitors in their targets.


Assuntos
Benchmarking , Desenho de Fármacos , Bases de Dados Factuais , Ligação de Hidrogênio , Inibidores de Proteínas Quinases/farmacologia
2.
Molecules ; 27(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296718

RESUMO

Protein kinases are key enzymes that catalyze the covalent phosphorylation of substrates via the transfer of the γ-phosphate of ATP, playing a crucial role in cellular proliferation, differentiation, and various cell regulatory processes. Due to their pivotal cellular role, the aberrant function of kinases has been associated with cancers and many other diseases. Consequently, competitive inhibition of the ATP binding site of protein kinases has emerged as an effective means of curing these diseases. Decades of intense development of protein kinase inhibitors (PKIs) resulted in 71 FDA-approved PKI drugs that target dozens of protein kinases for the treatment of various diseases. How do FDA-approved protein kinase inhibitor PKI drugs compete with ATP in their own binding pocket? This is the central question we attempt to address in this work. Based on modes of non-bonded interactions and their calculated interaction strengths by means of the advanced double hybrid DFT method B2PLYP, the molecular recognition of PKI drugs in the ATP-binding pockets was systematically analyzed. It was found that (1) all the FDA-approved PKI drugs studied here form one or more hydrogen bond(s) with the backbone amide N, O atoms in the hinge region of the ATP binding site, mimicking the adenine base; (2) all the FDA-approved PKI drugs feature two or more aromatic rings. The latter reach far and deep into the hydrophobic regions I and II, forming multiple CH-π interactions with aliphatic residues L(3), V(11), A(15), V(36), G(51), L(77) and π-π stacking interactions with aromatic residues F(47) and F(82), but ATP itself does not utilize these regions extensively; (3) all FDA-approved PKI drugs studied here have one thing in common, i.e., they frequently formed non-bonded interactions with a total of 12 residues L(3),V(11), A(15), K(17), E(24),V(36),T(45), F(47), G(51), L(77), D(81) and F(82) in the ATP binding. Many of those 12 commonly involved residues are highly conserved residues with important structural and catalytic functional roles. K(17) and E(24) are the two highly conserved residues crucial for the catalytic function of kinases. D(81) and F(82) belong to the DFG motif; T(45) was dubbed the gate keeper residue. F(47) is located on the hinge region and G(51) sits on the linker that connects the hinge to the αD-helix. It is this targeting of highly conserved residues in protein kinases that led to promiscuous PKI drugs that lack selectivity. Although the formation of hydrogen bond(s) with the backbone of the hinge gives PKI drugs the added binding affinity and the much-needed directionality, selectivity is sacrificed. That is why so many FDA-approved PKI drugs are known to have multiple targets. Moreover, off-target-mediated toxicity caused by a lack of selectivity was one of the major challenges facing the PKI drug discovery community. This work suggests a road map for future PKI drug design, i.e., targeting non-conserved residues in the ATP binding pocket to gain better selectivity so as to avoid off-target-mediated toxicity.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Quinases , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Adenina/metabolismo , Trifosfato de Adenosina/metabolismo , Fosfatos , Amidas
3.
Molecules ; 26(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810025

RESUMO

Protein kinases are key enzymes in many signal transduction pathways, and play a crucial role in cellular proliferation, differentiation, and various cell regulatory processes. However, aberrant function of kinases has been associated with cancers and many other diseases. Consequently, competitive inhibition of the ATP binding site of protein kinases has emerged as an effective means of curing these diseases. Over the past three decades, thousands of protein kinase inhibitors (PKIs) with varying molecular frames have been developed. Large-scale data mining of the Protein Data Bank resulted in a database of 2139 non-redundant high-resolution X-ray crystal structures of PKIs bound to protein kinases. This provided us with a unique opportunity to study molecular determinants for the molecular recognition of PKIs. A chemoinformatic analysis of 2139 PKIs resulted in findings that PKIs are "flat" molecules with high aromatic ring counts and low fractions of sp3 carbon. All but one PKI possessed one or more aromatic rings. More importantly, it was found that the average weighted hydrogen bond count is inversely proportional to the number of aromatic rings. Based on this linear relationship, we put forward the exchange rule of hydrogen bonding interactions and non-bonded π-interactions. Specifically, a loss of binding affinity caused by a decrease in hydrogen bonding interactions is compensated by a gain in binding affinity acquired by an increase in aromatic ring-originated non-bonded interactions (i.e., π-π stacking interactions, CH-π interactions, cation-π interactions, etc.), and vice versa. The very existence of this inverse relationship strongly suggests that both hydrogen bonding and aromatic ring-originated non-bonded interactions are responsible for the molecular recognition of PKIs. As an illustration, two representative PKI-kinase complexes were employed to examine the relative importance of different modes of non-bonded interactions for the molecular recognition of PKIs. For this purpose, two FDA-approved PKI drugs, ibrutinib and lenvatinib, were chosen. The binding pockets of both PKIs were thoroughly examined to identify all non-bonded intermolecular interactions. Subsequently, the strengths of interaction energies between ibrutinib and its interacting residues in tyrosine kinase BTK were quantified by means of the double hybrid DFT method B2PLYP. The resulting energetics for the binding of ibrutinib in tyrosine kinase BTK showed that CH-π interactions and π-π stacking interactions between aromatic rings of the drug and hydrophobic residues in its binding pocket dominate the binding interactions. Thus, this work establishes that, in addition to hydrogen bonding, aromatic rings function as important molecular determinants for the molecular recognition of PKIs. In conclusion, our findings support the following pharmacophore model for ATP-competitive kinase inhibitors: a small molecule features a scaffold of one or more aromatic rings which is linked with one or more hydrophilic functional groups. The former has the structural role of acting as a scaffold and the functional role of participating in aromatic ring-originated non-bonded interactions with multiple hydrophobic regions in the ATP binding pocket of kinases. The latter ensure water solubility and form hydrogen bonds with the hinge region and other hydrophilic residues of the ATP binding pocket.


Assuntos
Bases de Dados de Proteínas , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Ligação de Hidrogênio
4.
iScience ; 15: 489-501, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31129244

RESUMO

Tick-borne flaviviruses (TBFVs) can cause life-threatening encephalitis and hemorrhagic fever. To identify virus-host interactions that may be exploited as therapeutic targets, we analyzed the TBFV polyprotein in silico for antiviral protein-binding motifs. We obtained two putative tumor necrosis factor receptor-associated factor 6 (TRAF6)-binding motifs (TBMs) within the protease domain of the viral nonstructural 3 (NS3) protein. Here, we show that TBFV NS3 interacted with TRAF6 during infection and that TRAF6 supports TBFV replication. The proviral role of TRAF6 was not seen with mosquito-borne flaviviruses, consistent with the lack of conserved TBMs. Mutation of the second TBM within NS3 disrupted TRAF6 binding, coincident with reduced abundance of mature, autocatalytically derived form of the NS3 protease and significant virus attenuation in vitro. Our studies reveal insights into how flaviviruses exploit innate immunity for the purpose of viral replication and identify a potential target for therapeutic design.

5.
J Biol Chem ; 292(14): 5970-5980, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28232482

RESUMO

Pyridoxal 5'-phosphate (PLP) is a fundamental, multifunctional enzyme cofactor used to catalyze a wide variety of chemical reactions involved in amino acid metabolism. PLP-dependent enzymes optimize specific chemical reactions by modulating the electronic states of PLP through distinct active site environments. In aspartate aminotransferase (AAT), an extended hydrogen bond network is coupled to the pyridinyl nitrogen of the PLP, influencing the electrophilicity of the cofactor. This network, which involves residues Asp-222, His-143, Thr-139, His-189, and structural waters, is located at the edge of PLP opposite the reactive Schiff base. We demonstrate that this hydrogen bond network directly influences the protonation state of the pyridine nitrogen of PLP, which affects the rates of catalysis. We analyzed perturbations caused by single- and double-mutant variants using steady-state kinetics, high resolution X-ray crystallography, and quantum chemical calculations. Protonation of the pyridinyl nitrogen to form a pyridinium cation induces electronic delocalization in the PLP, which correlates with the enhancement in catalytic rate in AAT. Thus, PLP activation is controlled by the proximity of the pyridinyl nitrogen to the hydrogen bond microenvironment. Quantum chemical calculations indicate that Asp-222, which is directly coupled to the pyridinyl nitrogen, increases the pKa of the pyridine nitrogen and stabilizes the pyridinium cation. His-143 and His-189 also increase the pKa of the pyridine nitrogen but, more significantly, influence the position of the proton that resides between Asp-222 and the pyridinyl nitrogen. These findings indicate that the second shell residues directly enhance the rate of catalysis in AAT.


Assuntos
Aspartato Aminotransferases/química , Modelos Moleculares , Fosfato de Piridoxal/química , Animais , Aspartato Aminotransferases/genética , Aspartato Aminotransferases/metabolismo , Cristalografia por Raios X , Ligação de Hidrogênio , Domínios Proteicos , Fosfato de Piridoxal/genética , Fosfato de Piridoxal/metabolismo , Sus scrofa
6.
ACS Comb Sci ; 13(5): 486-95, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21766878

RESUMO

FK506 and rapamycin are immunosuppressive drugs with a unique mode of action. Prior to binding to their protein targets, these drugs form a complex with an endogenous chaperone FK506-binding protein 12 (FKBP12). The resulting composite FK506-FKBP and rapamycin-FKBP binding surfaces recognize the relatively flat target surfaces of calcineurin and mTOR, respectively, with high affinity and specificity. To test whether this mode of action may be generalized to inhibit other protein targets, especially those that are challenging to inhibit by conventional small molecules, we have developed a parallel synthesis method to generate a 200-member library of bifunctional cyclic peptides as FK506 and rapamycin analogues, which were referred to as "rapalogs". Each rapalog consists of a common FKBP-binding moiety and a variable effector domain. The rapalogs were tested for binding to FKBP12 by a fluorescence polarization competition assay. Our results show that FKBP12 binds to most of the rapalogs with high affinity (K(I) values in the nanomolar to low micromolar range), creating a large repertoire of composite surfaces for potential recognition of macromolecular targets such as proteins.


Assuntos
Técnicas de Química Sintética , Sirolimo/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Proteína 1A de Ligação a Tacrolimo/química , Sítios de Ligação , Modelos Moleculares , Conformação Molecular , Sirolimo/química , Estereoisomerismo , Propriedades de Superfície
7.
Org Biomol Chem ; 7(1): 117-27, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19081954

RESUMO

Three series of thioglycosyl donors differing only in their respective aglycon substituents within each series have been prepared as representatives of typical glycosyl donors. The relative anomeric reactivities of these donors were quantified under competitive glycosylation conditions with various reaction time, promoters, solvents and acceptors. Over three orders of magnitude reactivity difference were generated by simple transformation of the para-substituent on the aglycon with methanol as the acceptor, while chemoselectivities became lower with carbohydrate acceptors. Excellent linear correlations were attained between relative reactivity values of donors and sigma(p) values of the substituents in the Hammett plots. This indicates that the glycosylation mechanism remains the same over a wide range of reactivities and glycosylation conditions. The negative slopes of the Hammett plots suggested that electron donating substituents expedite the reactions and the magnitudes of slopes can be rationalized by neighboring group participation as well as electronic properties of the glycon protective groups. Within the same series of donors, less nucleophilic acceptors gave smaller slopes in their Hammett plots. This is consistent with the notion that acceptor nucleophilic attack onto the reactive intermediate is part of the rate limiting step of the glycosylation reaction.


Assuntos
Química/métodos , Glicosídeos/química , Carboidratos/química , Cromatografia Líquida de Alta Pressão , Elétrons , Glicosilação , Espectroscopia de Ressonância Magnética , Metanol/química , Modelos Químicos , Estrutura Molecular , Fatores de Tempo
8.
J Phys Chem A ; 110(4): 1375-81, 2006 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-16435797

RESUMO

The transport of ammonium across the cell membrane represents an important biological process in all living organisms. The mechanisms for ammonium translocation were analyzed by computer simulations based on first principles. Intermolecular interaction energies between the differentially methylated ammonium and the ammonium channel protein AmtB were calculated by means of the supermolecular approach at the MP2/6-311+G* level based on the high-resolution crystal structures of ligand-bound protein complexes. Our analysis attributes the molecular determinants for protein-ligand recognition in ammonium transporter AmtB to the aromatic cage formed by three aromatic residues Phe103, Phe107, and Trp148, as well as Ser219. The former residues are involved in cation-pi interactions with the positively charged methylated ammoniums. The latter residue acts as a hydrogen bond acceptor to ammonium. Thus, this work provides directly the missing evidence for the hypothesized role played by the wider vestibule site of AmtB at the periplasmic side of the membrane in "recruiting" NH(4)(+) or methylammonium ions as proposed by Khademi et al. (Science 2004, 305, 1587). In addition, a hybrid quantum mechanics/molecular mechanics scheme was applied to optimize the structures of differentially methylated ammoniums in the AmtB protein, which generated structural and energetic data that provide a satisfactory explanation to the experimental observation that tetramethylammonium is not inhibitory to conducting ammonium and methylammonium in the ammonium transport channel.

9.
Biophys J ; 86(5): 3097-111, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15111423

RESUMO

The structural stabilization role of carotenoids in the formation of photosynthetic pigment-protein complexes is investigated theoretically. The pi-pi stacking and CH-pi interactions between beta-carotenes and their surrounding chlorophylls (and/or aromatic residues) in Photosystem I (PS1) from the cyanobacterium Synechococcus elongatus were studied by means of the supermolecular approach at the level of the second-order Møller-Plesset perturbation method. PS1 features a core integral antenna system consisting of 22 beta-carotenes intertwined with 90 chlorophyll molecules. The binding environments of all 22 beta-carotenes were systematically analyzed. For 21 out of the 22 cases, one or more chlorophyll molecules exist within van der Waals' contacts of the beta-carotene molecule. The calculated strengths of pi-pi stacking interactions between the conjugated core of beta-carotene and the aromatic tetrapyrrole rings of chlorophyll are substantial, ranging from -3.54 kcal/mol for the perpendicular-positioned BCR4004...CHL1217 pair to -16.01 kcal/mol for the parallel-oriented BCR4007...CHL1122 pair. A strong dependence of the pi-pi stacking interaction energies on the intermolecular configurations of the two interacting pi-planes is observed. The parallel-oriented beta-carotene and chlorophyll pair is energetically much more stable than the perpendicular-positioned pair. The larger the extent of pi-pi overlapping, the stronger the interaction strength. In many cases, the beta-ring ends of beta-carotene molecules are found to interact with the tetrapyrrole rings of chlorophyll via CH-pi interactions. For the latter interactions, the calculated interaction strengths vary from -7.03 to -11.03 kcal/mol, depending on the intermolecular configuration. This work leads to the conclusion that pi-pi stacking and CH-pi interactions between beta-carotene and their surrounding chlorophylls and aromatic residues play an essential role in binding beta-carotenes in PS1 from S. elongatus. Consequently, the molecular basis of the structural stabilization function of carotenoids in formation of the photosynthetic pigment-protein complexes is established.


Assuntos
Biofísica/métodos , Carotenoides/química , Complexo de Proteína do Fotossistema I/química , Carbono/química , Carotenoides/metabolismo , Clorofila/química , Análise por Conglomerados , Cianobactérias/metabolismo , Dimerização , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Fotossíntese , Conformação Proteica , Estatística como Assunto , Termodinâmica , beta Caroteno/metabolismo
10.
J Mol Biol ; 336(3): 787-807, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-15095988

RESUMO

Adenosine 5'-triphosphate (ATP) plays an essential role in all forms of life. Molecular recognition of ATP in proteins is a subject of great importance for understanding enzymatic mechanism and for drug design. We have carried out a large-scale data mining of the Protein Data Bank (PDB) to analyze molecular determinants for recognition of the adenine moiety of ATP by proteins. Non-bonded intermolecular interactions (hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) between adenine base and surrounding residues in its binding pockets are systematically analyzed for 68 non-redundant, high-resolution crystal structures of adenylate-binding proteins. In addition to confirming the importance of the widely known hydrogen bonding, we found out that cation-pi interactions between adenine base and positively charged residues (Lys and Arg) and pi-pi stacking interactions between adenine base and surrounding aromatic residues (Phe, Tyr, Trp) are also crucial for adenine binding in proteins. On average, there exist 2.7 hydrogen bonding interactions, 1.0 pi-pi stacking interactions, and 0.8 cation-pi interactions in each adenylate-binding protein complex. Furthermore, a high-level quantum chemical analysis was performed to analyze contributions of each of the three forms of intermolecular interactions (i.e. hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) to the overall binding force of the adenine moiety of ATP in proteins. Intermolecular interaction energies for representative configurations of intermolecular complexes were analyzed using the supermolecular approach at the MP2/6-311 + G* level, which resulted in substantial interaction strengths for all the three forms of intermolecular interactions. This work represents a timely undertaking at a historical moment when a large number of X-ray crystallographic structures of proteins with bound ATP ligands have become available, and when high-level quantum chemical analysis of intermolecular interactions of large biomolecular systems becomes computationally feasible. The establishment of the molecular basis for recognition of the adenine moiety of ATP in proteins will directly impact molecular design of ATP-binding site targeted enzyme inhibitors such as kinase inhibitors.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas/metabolismo , Adenina/química , Adenina/metabolismo , Trifosfato de Adenosina/química , Bases de Dados de Proteínas , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Nucleotídeos/química , Nucleotídeos/metabolismo , Ligação Proteica , Proteínas/química
11.
FEBS Lett ; 556(1-3): 26-34, 2004 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-14706820

RESUMO

One key area of protein kinase research is the identification of cognate substrates. The search for substrates is hampered by problems in unambiguously assigning substrates to a particular kinase in vitro and in vivo. One solution to this impasse is to engineer the kinase of interest to accept an ATP analogue which is orthogonal (unable to fit into the ATP binding site) for the wild-type enzyme and the majority of other kinases. The acceptance of structurally modified, gamma-(32)P-labelled, nucleotide analogue by active site-modified kinase can provide a unique handle by which the direct substrates of any particular kinase can be displayed in crude mixtures or cell lysates. We have taken this approach with the serine/threonine kinase Raf-1, which plays an essential role in the transduction of stimuli through the Ras-->Raf-->MEK-->ERK/MAP kinase cascade. This cascade plays essential roles in proliferation, differentiation and apoptosis. Here we detail the mutagenesis strategy for the ATP binding pocket of Raf-1, such that it can utilise an N(6)-substituted ATP analogue. We show that these mutations do not alter the substrate specificity and signal transduction through Raf-1. We screen a library of analogues to identify which are orthogonal for Raf-1, and show that mutant Raf-1 can utilise the orthogonal analogue N(6)(2-phenethyl) ATP in vitro to phosphorylate its currently only accepted substrate MEK. Importantly we show that our approach can be used to tag putative direct substrates of Raf-1 kinase with (32)P-N(6)(2-phenethyl) ATP in cell lysates.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células COS , Linhagem Celular , Genes Reporter/genética , Luciferases/genética , Luciferases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Fosforilação , Testes de Precipitina , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Spodoptera , Especificidade por Substrato
12.
J Am Chem Soc ; 125(47): 14216-7, 2003 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-14624536

RESUMO

Adenosine 5'-triphosphate (ATP) plays an essential role in all forms of life. Molecular recognition of ATP in ATP-binding proteins is a subject of great importance for understanding enzymatic mechanisms and for drug design. We have carried out a large-scale data mining of the Protein Data Bank (PDB) to analyze molecular determinants for recognition of ATP, in particular, the adenine base, by ATP-binding proteins. A novel distribution pattern of charged residues around the adenine base was discovered: lysine residues tend to occupy the major groove N7 side of the adenine base, and the arginine residues situate preferentially above or below the adenine bases. Such an arrangement is advantageous because it facilitates multiple modes of intermolecular interactions, that is, cation-pi interactions and a hydrogen bond between lysine and adenine, and cation-pi and pi-pi stacking interactions between arginine and adenine. For the two representative Lys... Adenine and Arg... Adenine interactions, intermolecular interaction energies were subsequently analyzed by means of the supermolecular approach at the MP2 level with solvation free energy correction using the SM5.42R model of Cramer and Truhlar, which gave rise to significant interaction strengths.


Assuntos
Adenina/química , Adenina/metabolismo , Proteínas/química , Proteínas/metabolismo , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Ligação Proteica , Teoria Quântica , Termodinâmica
13.
J Am Chem Soc ; 124(28): 8445-51, 2002 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-12105926

RESUMO

Carotenoids play the dual function of light harvesting and photoprotection in photosynthetic organisms. Despite their functional importance, the molecular basis for binding of carotenoids in the photosynthetic proteins is poorly understood. We have discovered that all carotenoids are surrounded either by aromatic residues or by chlorophylls in all known crystal structures of the photosynthetic pigment-protein complexes. The intermolecular pi-pi stacking interactions between carotenoids and the surrounding aromatic residues in the light-harvesting complex II (LH-II) of Rhodospirillum molischianum were analyzed by high level ab initio electronic structure calculations. Intermolecular interaction energies were calculated with the second-order Møller-Plesset perturbation method (MP2) using the modified 6-31G*(0.25) basis set with diffuse d-polarization by Hobza and co-workers. The MP2/6-31G*(0.25) calculations yield a total stabilization energy of -15.66 kcal/mol between the carotenoid molecule and the four surrounding aromatic residues (alpha-Trp-23, beta-Phe-20, beta-Phe-24, beta-Phe-27). It is thus concluded that pi-pi stacking interactions between carotenoids and the aromatic residues play an essential role in binding carotenoids in the LH-II complex of Rhodospirillum molischianum. The physical nature of the pi-pi stacking interactions was further analyzed, and the dispersion interactions were found to be the dominant intermolecular attraction force. There is also a substantial electrostatic contribution to the overall intermolecular stabilization energy.


Assuntos
Carotenoides/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Cianobactérias/química , Modelos Moleculares , Teoria Quântica , Rhodospirillum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...