Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
1.
Orthop Surg ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778391

RESUMO

OBJECTIVE: Percutaneous repair is an alternative to open surgical repair of the Achilles tendon with comparable, functional results and low re-rupture and infection rates; however, sural nerve injury is a known complication. The purpose of this study is to design a new surgical procedure, the minimally invasive peritendinous submembrane access technique (MIS-PSAT). It offers optimal results, with excellent functional outcomes, and with minimal soft tissue complications and sural nerve injury. METHODS: This retrospective study included 249 patients with acute closed Achilles tendon ruptures treated at our institution between 2009 and 2019. All patients underwent MIS-PSAT at our institution and were followed up for 8-48 months. Functional evaluation was based on the Achilles tendon total rupture score (ATRS) and the American Orthopedic Foot and Ankle Society Ankle-Hindfoot Scale (AOFAS-AHS), associated with local complications and isokinetic tests. RESULTS: None of the patients had infection, necrosis, or sural nerve injury. Re-rupture occurred in two cases. The average times to return to work and sports was 10.4 and 31.6 weeks, respectively. The average ATRS and AOFAS-AHS scores were 90.2 and 95.7, respectively, with an excellent rate of 99.5%. Isokinetic tests showed that ankle function on the affected side was comparable with that on the healthy side (p > 0.05). CONCLUSION: The MIS-PSAT for acute Achilles tendon rupture is easy to perform with few complications. Importantly, the surgical technique reduces the risk of sural nerve injuries. Patients have high postoperative satisfaction, low re-rupture rates, and muscle strength, and endurance can be restored to levels similar to those on the healthy side.

2.
BMC Geriatr ; 24(1): 413, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730354

RESUMO

BACKGROUND: There is growing evidence linking the age-adjusted Charlson comorbidity index (aCCI), an assessment tool for multimorbidity, to fragility fracture and fracture-related postoperative complications. However, the role of multimorbidity in osteoporosis has not yet been thoroughly evaluated. We aimed to investigate the association between aCCI and the risk of osteoporosis in older adults at moderate to high risk of falling. METHODS: A total of 947 men were included from January 2015 to August 2022 in a hospital in Beijing, China. The aCCI was calculated by counting age and each comorbidity according to their weighted scores, and the participants were stratified into two groups by aCCI: low (aCCI < 5), and high (aCCI ≥5). The Kaplan Meier method was used to assess the cumulative incidence of osteoporosis by different levels of aCCI. The Cox proportional hazards regression model was used to estimate the association of aCCI with the risk of osteoporosis. Receiver operating characteristic (ROC) curve was adapted to assess the performance for aCCI in osteoporosis screening. RESULTS: At baseline, the mean age of all patients was 75.7 years, the mean BMI was 24.8 kg/m2, and 531 (56.1%) patients had high aCCI while 416 (43.9%) were having low aCCI. During a median follow-up of 6.6 years, 296 participants developed osteoporosis. Kaplan-Meier survival curves showed that participants with high aCCI had significantly higher cumulative incidence of osteoporosis compared with those had low aCCI (log-rank test: P < 0.001). When aCCI was examined as a continuous variable, the multivariable-adjusted model showed that the osteoporosis risk increased by 12.1% (HR = 1.121, 95% CI 1.041-1.206, P = 0.002) as aCCI increased by one unit. When aCCI was changed to a categorical variable, the multivariable-adjusted hazard ratios associated with different levels of aCCI [low (reference group) and high] were 1.00 and 1.557 (95% CI 1.223-1.983) for osteoporosis (P <  0.001), respectively. The aCCI (cutoff ≥5) revealed an area under ROC curve (AUC) of 0.566 (95%CI 0.527-0.605, P = 0.001) in identifying osteoporosis in older fall-prone men, with sensitivity of 64.9% and specificity of 47.9%. CONCLUSIONS: The current study indicated an association of higher aCCI with an increased risk of osteoporosis among older fall-prone men, supporting the possibility of aCCI as a marker of long-term skeletal-related adverse clinical outcomes.


Assuntos
Acidentes por Quedas , Osteoporose , Humanos , Masculino , Idoso , Osteoporose/epidemiologia , Osteoporose/diagnóstico , Estudos Retrospectivos , Idoso de 80 Anos ou mais , Incidência , Medição de Risco/métodos , Fatores de Risco , Comorbidade , China/epidemiologia , Fatores Etários
3.
J Biomed Opt ; 29(6): 065001, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38737791

RESUMO

Significance: Type 2 diabetes mellitus (T2DM) is a global health concern with significant implications for vascular health. The current evaluation methods cannot achieve effective, portable, and quantitative evaluation of foot microcirculation. Aim: We aim to use a wearable device laser Doppler flowmetry (LDF) to evaluate the foot microcirculation of T2DM patients at rest. Approach: Eleven T2DM patients and twelve healthy subjects participated in this study. The wearable LDF was used to measure the blood flows (BFs) for regions of the first metatarsal head (M1), fifth metatarsal head (M5), heel, and dorsal foot. Typical wavelet analysis was used to decompose the five individual control mechanisms: endothelial, neurogenic, myogenic, respiratory, and heart components. The mean BF and sample entropy (SE) were calculated, and the differences between diabetic patients and healthy adults and among the four regions were compared. Results: Diabetic patients showed significantly reduced mean BF in the neurogenic (p=0.044) and heart (p=0.001) components at the M1 and M5 regions (p=0.025) compared with healthy adults. Diabetic patients had significantly lower SE in the neurogenic (p=0.049) and myogenic (p=0.032) components at the M1 region, as well as in the endothelial (p<0.001) component at the M5 region and in the myogenic component at the dorsal foot (p=0.007), compared with healthy adults. The SE in the myogenic component at the dorsal foot was lower than at the M5 region (p=0.050) and heel area (p=0.041). Similarly, the SE in the heart component at the dorsal foot was lower than at the M5 region (p=0.017) and heel area (p=0.028) in diabetic patients. Conclusions: This study indicated the potential of using the novel wearable LDF device for tracking vascular complications and implementing targeted interventions in T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Pé Diabético , , Fluxometria por Laser-Doppler , Microcirculação , Dispositivos Eletrônicos Vestíveis , Humanos , Pé Diabético/fisiopatologia , Pé Diabético/diagnóstico por imagem , Masculino , Microcirculação/fisiologia , Feminino , Fluxometria por Laser-Doppler/métodos , Diabetes Mellitus Tipo 2/fisiopatologia , Pessoa de Meia-Idade , Pé/irrigação sanguínea , Idoso , Análise de Ondaletas , Adulto
4.
Heliyon ; 10(9): e30388, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38756581

RESUMO

Objective: This study aimed to investigate the mechanism of long noncoding ribonucleic acid (lncRNA) SNHG16 on kidney clear cell carcinoma (KIRC) cells by targeting miR-506-3p/ETS proto-oncogene 1, transcription factor (ETS1)/RAS/Extracellular regulated protein kinases (ERK) molecular axis, thus to provide reference for clinical diagnosis and treatment of KIRC in the future. Methods: Thirty-six patients with KIRC were enrolled in this study, and their carcinoma tissues and adjacent tissues were obtained for the detection of SNHG16/miR-506-3p/ETS1/RAS/ERK expression. Then, over-expressed SNHG16 plasmid and silenced plasmid were transfected into KIRC cells to observe the changes of their biological behavior. Results: SNHG16 and ETS1 were highly expressed while miR-506- 3p was low expressed in KIRC tissues; the RAS/ERK signaling pathway was significantly activated in KIRC tissues (P < 0.05). After SNHG16 silence, KIRC cells showed decreased proliferation, invasion and migration capabilities and increased apoptosis rate; correspondingly, increase in SNHG16 expression achieved opposite results (P < 0.05). Finally, in the rescue experiment, the effects of elevated SNHG16 on KIRC cells were reversed by simultaneous increase in miR-506-3p, and the effects of miR-506-3p were reversed by ETS1. Activation of the RAS/ERK pathway had the same effect as increase in ETS1, which further worsened the malignancy of KIRC. After miR-506-3p increase and ETS1 silence, the RAS/ERK signaling pathway was inhibited (P < 0.05). At last, the rescue experiment (co-transfection) confirmed that the effect of SNHG16 on KIRC cells is achieved via the miR-506-3p/ETS1/RAS/ERK molecular axis. Conclusion: SNHG16 regulates the biological behavior of KIRC cells by targeting the miR-506-3p/ETS1/RAS/ERK molecular axis.

5.
Angew Chem Int Ed Engl ; : e202402946, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696279

RESUMO

Electrolytes with anion-dominated solvation are promising candidates to achieve dendrite-free and high-voltage potassium metal batteries. However, it's challenging to form anion-reinforced solvates at low salt concentrations. Herein, we construct an anion-reinforced solvation structure at a moderate concentration of 1.5 M with weakly coordinated cosolvent ethylene glycol dibutyl ether. The unique solvation structure accelerates the desolvation of K+, strengthens the oxidative stability to 4.94 V and facilitates the formation of inorganic-rich and stable electrode-electrolyte interface. These enable stable plating/stripping of K metal anode over 2200 h, high capacity retention of 83.0% after 150 cycles with a high cut-off voltage of 4.5 V in K0.67MnO2//K cells, and even 91.5% after 30 cycles under 4.7 V. This work provides insight into weakly coordinated cosolvent and opens new avenues for designing ether-based high-voltage electrolytes.

6.
Eur J Med Res ; 29(1): 271, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711117

RESUMO

Dexmedetomidine (Dex) has been used in surgery to improve patients' postoperative cognitive function. However, the role of Dex in stress-induced anxiety-like behaviors and cognitive impairment is still unclear. In this study, we tested the role of Dex in anxiety-like behavior and cognitive impairment induced by acute restrictive stress and analyzed the alterations of the intestinal flora to explore the possible mechanism. Behavioral and cognitive tests, including open field test, elevated plus-maze test, novel object recognition test, and Barnes maze test, were performed. Intestinal gut Microbe 16S rRNA sequencing was analyzed. We found that intraperitoneal injection of Dex significantly improved acute restrictive stress-induced anxiety-like behavior, recognition, and memory impairment. After habituation in the environment, mice (male, 8 weeks, 18-23 g) were randomly divided into a control group (control, N = 10), dexmedetomidine group (Dex, N = 10), AS with normal saline group (AS + NS, N = 10) and AS with dexmedetomidine group (AS + Dex, N = 10). By the analysis of intestinal flora, we found that acute stress caused intestinal flora disorder in mice. Dex intervention changed the composition of the intestinal flora of acute stress mice, stabilized the ecology of the intestinal flora, and significantly increased the levels of Blautia (A genus of anaerobic bacteria) and Coprobacillus. These findings suggest that Dex attenuates acute stress-impaired learning and memory in mice by maintaining the homeostasis of intestinal flora.


Assuntos
Dexmedetomidina , Microbioma Gastrointestinal , Homeostase , Estresse Psicológico , Animais , Dexmedetomidina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Masculino , Homeostase/efeitos dos fármacos , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Memória/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Aprendizagem em Labirinto/efeitos dos fármacos , Ansiedade/tratamento farmacológico
7.
Andrology ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591173

RESUMO

BACKGROUND: The etiology of chronic prostatitis remains unclear; consequently, this disease is associated with recurrence and ineffective clinical therapy. Therefore, there is an urgent need to investigate the underlying pathogenesis of chronic prostatitis in order to develop more efficacious treatments. OBJECTIVE: The previous study found that knocking out of PEBP4 leads to chronic prostatitis in the male mice. This research aimed to identify the role of PEBP4 in prostatitis, determine the molecular pathogenic mechanisms associated with chronic prostatitis, and provide guidelines for the development of new treatment strategies for chronic prostatitis. MATERIALS AND METHODS: A PEBP4 exon knockout strain (PEBP4-/-) was established in C57BL/6 mice via the Cre-loxP system. Hematoxylin-eosin (H&E) staining was used to investigate histological changes. RNA-sequencing was used to investigate the gene expression signature of the prostate and the levels of inflammatory cytokines were determined by real-time polymerase chain reaction (RT-PCR). The expression of PEBP4 protein in prostate tissue was determined by immunohistochemistry in specimens from patients with BPH and BPH combined with chronic prostatitis. Finally, we used a CRISPR-Cas9 plasmid to knockout PEBP4 in RWPE-1 cells; western blotting was subsequently used to measure the level of activation in the NF-κB signaling pathway after activating with TNF-α. RESULTS: Hemorrhage and inflammatory cell infiltration were incidentally observed in the seminal vesicles and prostate glands of PEBP4-/- mice after being fed with a normal diet for 1 year. In addition, we found significantly lower (p < 0.001) expression levels of PEBP4 protein in prostate tissues from patients with benign prostate hyperplasia (BPH) and chronic and non-bacterial prostatitis (CNP) when compared to those with BPH only. The reduced expression of PEBP4 led to a higher risk of prostatitis recurrence in patients after 2 years of follow-up. Increased levels of NF-κB and IκB phosphorylation were observed in PEBP4-knockout RWPE-1 cells and prostate glands from PEBP4-/- mice. CONCLUSION: The knockout of PEBP4 in experimental mice led to chronic prostatitis and the reduced expression of PEBP4 in patients with higher risk of chronic and non-bacterial prostatitis suggested that PEBP4 might act as a protective factor against chronic prostatitis. The knockout of PEBP4 in RWPE-1 cells led to the increased activation of NF-κB and IκB, thus indicating that inhibition of PEBP4 faciliated the NF-κB signaling cascade. Our findings provide a new etiology and therapeutic target for chronic prostatitis.

8.
Materials (Basel) ; 17(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38541440

RESUMO

The nanoscale Cu-rich precipitates (CRPs) are one of the most critical microstructural features responsible for degrading the mechanical properties of reactor pressure vessel (RPV) steels. The prospect of the rapid regeneration of the service performance of degraded materials through electropulsing is attractive, and electropulsing has been proven to have the application potential to eliminate the CRPs and recover the mechanical properties of RPV materials. However, few studies have investigated the secondary service issue of electropulsing. This paper provides experimental findings from microstructural investigations and property evaluations of a FeCu RPV model alloy subjected to re-aging following recovery electropulsing and annealing treatments. The evolution behavior of CRPs and the changes in the hardness of the alloy during the re-aging process after electropulsing treatment were consistent with the initial aging process, while the re-aging process of the annealing treatment group was quite different from the initial aging. The difference between the electropulsing and annealing treatment groups was that the annealing treatment failed to eliminate the precipitates completely, leaving behind some large precipitates. This work demonstrates the potential application of EPT in this field.

9.
Int J Biol Macromol ; 266(Pt 2): 131092, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527678

RESUMO

V-type granular starches (VGSs) were prepared via an ethanol-alkaline (EA) method using maize starch with different amylose contents, specifically, high amylose (HAM), normal maize starch (MS), and waxy maize starch (WS). The X-ray diffraction pattern of the native starch was completely transformed into a V-type pattern after the EA treatment, indicating a structural change in the starch granules. The VGSs prepared by HAM had highest relative crystallinity (31.8°), while the VGSs prepared by WS showed amorphous diffraction pattern. Excessive NaOH, however, would disrupt the formation of V-type structures and cause granular shape rupture. The quantity of double-helical structures, particularly those formed by amylopectin at the starch granules' periphery, significantly decreased. Conversely, single-helical structures formed by amylose increased. A notable rise in the relative crystallinity of V crystals. Four VGS samples, characterized by granular integrity, were chosen for the next investigation of physicochemical and digestive properties. VGS prepared from HAM exhibited higher granular integrity, lower cold-water swelling extent (59.0 and 161.0 cP), improved thermal stability (the value of breakdown as lower as 57.67 and 186.67 cP), and higher resistance to digestion (RS content was up to 10.38 % and 9.00 % higher than 5.86 % and 5.66 % of VGS prepared from WS and MS). The results confirmed that amylose content has a substantial impact on the microstructural and physicochemical properties of VGSs.


Assuntos
Amilose , Amido , Zea mays , Amilose/química , Zea mays/química , Amido/química , Fenômenos Químicos , Difração de Raios X , Amilopectina/química , Digestão
10.
Front Public Health ; 12: 1307927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414893

RESUMO

Background: Adverse psychosocial factors play an important role in cardio-cerebral vascular disease (CCVD). The aim of this study was to evaluate the impact of the cumulative burden of loneliness on the risk of CCVD in the Chinese older adult. Methods: A total of 6,181 Chinese older adult over the age of 62 in the monitoring survey of the fourth Sample Survey of the Aged Population in Urban and Rural China (SSAPUR) were included in this study. The loneliness cumulative burden (scored by cumulative degree) was weighted by the loneliness score for two consecutive years (2017-2018) and divided into low- and high-burden groups. The outcome was defined as the incidence of CCVD 1 year later (2018-2019). A multivariate logistic regression model was used to examine the relationship between the cumulative burden of loneliness and the new onset of CCVD. Results: Among participants, 18.9% had a higher cumulative burden of loneliness, and 11.5% had a CCVD incidence within 1 year. After multivariate adjustment, the risk of developing CCVD in the high-burden group was approximately 37% higher than that in the low-burden group (OR 1.373, 95%CI 1.096-1.721; p = 0.006). Similar results were obtained when calculating the burden based on cumulative time. Longitudinal change in loneliness was not significantly associated with an increased risk of CCVD. A higher cumulative burden of loneliness may predict a higher risk of developing CCVD in older adult individuals aged 62-72 years or in those with diabetes. Conclusion: The cumulative burden of loneliness can be used to assess the risk of new-onset CCVD in the older adult in the short term.


Assuntos
Transtornos Cerebrovasculares , Solidão , Humanos , Idoso , Estudos de Coortes , Transtornos Cerebrovasculares/epidemiologia , Incidência , Inquéritos e Questionários
11.
Acta Cir Bras ; 39: e390924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324802

RESUMO

PURPOSE: Osteoarthritis (OA) is a degenerative joint disease which is categorized via destruction of joint cartilage and it also affects the various joints, especially knees and hips. Sinomenine active phytoconstituents isolated from the stem of Sinomenium acutum and already proof anti-inflammatory effect against the arthritis model of rodent. In this experimental protocol, we scrutinized the anti-osteoarthritis effect of sinomenine against monosodium iodoacetate (MIA) induced OA in rats. METHODS: MIA (3 mg/50 µL) was used for inducing the OA in the rats, and rats received the oral administration of sinomenine (2.5, 5 and 7.5 mg/kg body weight) up to the end of the experimental study (four weeks). The body and organs weight were estimated. Aggrecan, C-terminal cross-linked telopeptide of type II collagen (CTX-II), glycosaminoglycans (GCGs), monocyte chemoattractant protein-1 (MCP-1), Interferon gamma (IFN-γ), antioxidant, inflammatory cytokines, inflammatory mediators and matrix metalloproteinases (MMP) were analyzed. RESULTS: Sinomenine significantly (P < 0.001) boosted the body weight and reduced the heart weight, but the weight of spleen and kidney remain unchanged. Sinomenine significantly (P < 0.001) reduced the level of nitric oxide, MCP-1 and improved the level of aggrecan, IFN-γ and GCGs. Sinomenine remarkably upregulated the level of glutathione, superoxide dismutase and suppressed the level of malonaldehyde. It effectually modulated the level of inflammatory cytokines and inflammatory mediators and significantly (P < 0.001) reduced the level of MMPs, like MMP-1, 2, 3, 9 and 13. CONCLUSIONS: Sinomenine is a beneficial active agent for the treatment of OA disease.


Assuntos
Cartilagem Articular , Morfinanos , Osteoartrite , Ratos , Animais , Ácido Iodoacético/metabolismo , Ácido Iodoacético/farmacologia , Osteoartrite/metabolismo , Agrecanas/metabolismo , Agrecanas/farmacologia , Modelos Animais de Doenças , Cartilagem Articular/metabolismo , Metaloproteinases da Matriz/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Peso Corporal
12.
Heliyon ; 10(3): e24671, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317973

RESUMO

MicroRNAs (miRs) play multiple roles during cutaneous squamous cell carcinoma (CSCC) progression. Previous studies suggest miR-124 could inhibit cancer development in CSCC. METHODS: Obtained 63 pairs of CSCC and adjacent tissues for analysis. Cultured HaCaT and two CSCC cell lines (A431 and SCL-1) in DMEM (10 % FBS). Transfected cells using Lipofectamine 2000 with various miR-124 mimics, inhibitors, or Snail family transcriptional repressor 2 (SNAI2) expression plasmid. Performed a series of assays, including real-time quantitative PCR, Western blot, CCK8, wound healing, transwell, and luciferase reporter gene assay, to examine the effects of miR-124 on CSCC cells. RESULTS: An evident downregulation of miR-124 in CSCC tissues, which was related to advanced disease stage and nodal metastasis. Overexpressing miR-124 could reduce the proliferation, migration, and invasion abilities of CSCC cells. It was verified that miR-124 targets the SNAI2 in CSCC cells. Moreover, ectopic expression of SNAI2 rescued the suppressive effects on CSCC cells induced by miR-124 overexpression. Furthermore, miR-124 increased cell sensitivity to cisplatin. Besides, SNAI2 is a critical factor in the immune-related aspects of CSCC and its modulation may influence the response to immunotherapy. CONCLUSION: We demonstrate that miR-124 inhibits CSCC progression through downregulating SNAI2, and thus it may be a molecular candidate for treating CSCC in the clinic.

13.
Front Oncol ; 14: 1308916, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357202

RESUMO

NTRK-rearranged spindle cell neoplasms (NTRK-RSCNs) are rare soft tissue tumor molecularly characterized by NTRK gene rearrangement, which occurs mostly in children and young adults, and rarely in adults. The abnormal tumor located in superficial or deep soft tissues of human extremities and trunk mostly, and rarely also involves abdominal organs. In this case, we report a malignant NTRK-RSCN that occurred in the pelvic region of an adult. The patient was found to have a large tumor in the pelvic region with a pathological diagnosis of infiltrative growth of short spindle-shaped tumor cells with marked heterogeneity. Immunohistochemistry of this patient showed positive vimentin, pan-TRK and Ki67 (approximately 60%) indicators with negative S100, Desmin and DOG1. Molecular diagnosis revealed c-KIT and PDGFRα wild type with TPM3-NTRK1 fusion, unfortunately this patient had a rapidly progressive disease and passed away. This case highlights the gene mutation in the molecular characteristics of NTRK-RSCNs, and the significance of accurate molecular typing for the diagnosis of difficult cases.

14.
Nat Commun ; 15(1): 1683, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395938

RESUMO

Dipterocarpoideae species form the emergent layer of Asian rainforests. They are the indicator species for Asian rainforest distribution, but they are severely threatened. Here, to understand their adaptation and population decline, we assemble high-quality genomes of seven Dipterocarpoideae species including two autotetraploid species. We estimate the divergence time between Dipterocarpoideae and Malvaceae and within Dipterocarpoideae to be 108.2 (97.8‒118.2) and 88.4 (77.7‒102.9) million years ago, and we identify a whole genome duplication event preceding dipterocarp lineage diversification. We find several genes that showed a signature of selection, likely associated with the adaptation to Asian rainforests. By resequencing of two endangered species, we detect an expansion of effective population size after the last glacial period and a recent sharp decline coinciding with the history of local human activities. Our findings contribute to understanding the diversification and adaptation of dipterocarps and highlight anthropogenic disturbances as a major factor in their endangered status.


Assuntos
Dipterocarpaceae , Genômica , Floresta Úmida , Genoma , Filogenia
15.
Foods ; 13(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38397567

RESUMO

BACKGROUND: Hyperuricaemia (HUA) is a disorder of purine metabolism in the body. We previously synthesized a hesperitin (Hsp)-Cu(II) complex and found that the complex possessed strong uric acid (UA)-reducing activity in vitro. In this study we further explored the complex's UA-lowering and nephroprotective effects in vivo. METHODS: A mouse with HUA was used to investigate the complex's hypouricemic and nephroprotective effects via biochemical analysis, RT-PCR, and Western blot. RESULTS: Hsp-Cu(II) complex markedly decreased the serum UA level and restored kidney tissue damage to normal in HUA mice. Meanwhile, the complex inhibited liver adenosine deaminase (ADA) and xanthine oxidase (XO) activities to reduce UA synthesis and modulated the protein expression of urate transporters to promote UA excretion. Hsp-Cu(II) treatment significantly suppressed oxidative stress and inflammatory in the kidney, reduced the contents of cytokines and inhibited the activation of the nucleotide-binding oligomerization domain (NOD)-like receptor thermal protein domain associated protein 3 (NLRP3) inflammatory pathway. CONCLUSIONS: Hsp-Cu(II) complex reduced serum UA and protected kidneys from renal inflammatory damage and oxidative stress by modulating the NLRP3 pathway. Hsp-Cu(II) complex may be a promising dietary supplement or nutraceutical for the therapy of hyperuricemia.

16.
Mol Ther Methods Clin Dev ; 32(1): 101204, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38390556

RESUMO

Genetically engineered macrophages (GEMs) have emerged as an appealing strategy to treat cancers, but they are largely impeded by the cell availability and technical challenges in gene transfer. Here, we develop an efficient approach to generate large-scale macrophages from human induced pluripotent stem cells (hiPSCs). Starting with 1 T150 dish of 106 hiPSCs, more than 109 mature macrophages (iMacs) could be generated within 1 month. The generated iMacs exhibit typical macrophage properties such as phagocytosis and polarization. We then generate hiPSCs integrated with an IL-12 expression cassette in the AAVS1 locus to produce iMacs secreting IL-12, a strong proimmunity cytokine. hiPSC-derived iMacs_IL-12 prevent cytotoxic T cell exhaustion and activate T cells to kill different cancer cells. Furthermore, iMacs_IL-12 display strong antitumor effects in a T cell-dependent manner in subcutaneously or systemically xenografted mice of human lung cancer. Therefore, we provide an off-the-shelf strategy to produce large-scale GEMs for cancer therapy.

17.
Stem Cell Reports ; 19(2): 196-210, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38215759

RESUMO

Emergency myelopoiesis (EM) is essential in immune defense against pathogens for rapid replenishing of mature myeloid cells. During the EM process, a rapid cell-cycle switch from the quiescent hematopoietic stem cells (HSCs) to highly proliferative myeloid progenitors (MPs) is critical. How the rapid proliferation of MPs during EM is regulated remains poorly understood. Here, we reveal that ATG7, a critical autophagy factor, is essential for the rapid proliferation of MPs during human myelopoiesis. Peripheral blood (PB)-mobilized hematopoietic stem/progenitor cells (HSPCs) with ATG7 knockdown or HSPCs derived from ATG7-/- human embryonic stem cells (hESCs) exhibit severe defect in proliferation during fate transition from HSPCs to MPs. Mechanistically, we show that ATG7 deficiency reduces p53 localization in lysosome for a potential autophagy-mediated degradation. Together, we reveal a previously unrecognized role of autophagy to regulate p53 for a rapid proliferation of MPs in human myelopoiesis.


Assuntos
Mielopoese , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células Mieloides , Autofagia/genética
18.
Nat Commun ; 15(1): 454, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212623

RESUMO

Emerging evidence indicates that the activation of ferroptosis by glutathione peroxidase 4 (GPX4) inhibitors may be a prominent therapeutic strategy for tumor suppression. However, the wide application of GPX4 inhibitors in tumor therapy is hampered due to poor tumor delivery efficacy and the nonspecific activation of ferroptosis. Taking advantage of in vivo self-assembly, we develop a peptide-ferriporphyrin conjugate with tumor microenvironment specific activation to improve tumor penetration, endocytosis and GPX4 inhibition, ultimately enhancing its anticancer activity via ferroptosis. Briefly, a GPX4 inhibitory peptide is conjugated with an assembled peptide linker decorated with a pH-sensitive moiety and ferriporphyrin to produce the peptide-ferriporphyrin conjugate (Gi-F-CAA). Under the acidic microenvironment of the tumor, the Gi-F-CAA self-assembles into large nanoparticles (Gi-F) due to enhanced hydrophobic interaction after hydrolysis of CAA, improving tumor endocytosis efficiency. Importantly, Gi-F exhibits substantial inhibition of GPX4 activity by assembly enhanced binding (AEB) effect, augmenting the oxidative stress of ferriporphyrin-based Fenton reaction, ultimately enabling antitumor properties in multiple tumor models. Our findings suggest that this peptide-ferriporphyrin conjugate design with AEB effect can improve the therapeutic effect via induction of ferroptosis, providing an alternative strategy for overcoming chemoresistance.


Assuntos
Ferroptose , Neoplasias , Humanos , Endocitose , Hemina , Hidrólise , Peptídeos/farmacologia , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral
19.
J Gene Med ; 26(1): e3644, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072402

RESUMO

BACKGROUND: Melanoma, a frequently encountered cutaneous malignancy characterized by a poor prognosis, persists in presenting formidable challenges despite the advancement in molecularly targeted drugs designed to improve survival rates significantly. Unfortunately, as more therapeutic choices have developed over time, the gradual emergence of drug resistance has become a notable impediment to the effectiveness of these therapeutic interventions. The hepatocyte growth factor (HGF)/c-met signaling pathway has attracted considerable attention, associated with drug resistance stemming from multiple potential mutations within the c-met gene. The activation of the HGF/c-met pathway operates in an autocrine manner in melanoma. Notably, a key player in the regulatory orchestration of HGF/c-met activation is the long non-coding RNA MEG3. METHODS: Melanoma tissues were collected to measure MEG3 expression. In vitro validation was performed on MEG3 to prove its oncogenic roles. Bioinformatic analyses were conducted on the TCGA database to build the MEG3-related score. The immune characteristics and mutation features of the MEG3-related score were explored. RESULTS: We revealed a negative correlation between HGF and MEG3. In melanoma cells, HGF inhibited MEG3 expression by augmenting the methylation of the MEG3 promoter. Significantly, MEG3 exhibits a suppressive impact on the proliferation and migration of melanoma cells, concurrently inhibiting c-met expression. Moreover, a predictive model centered around MEG3 demonstrates notable efficacy in forecasting critical prognostic indicators, immunological profiles, and mutation statuses among melanoma patients. CONCLUSIONS: The present study highlights the potential of MEG3 as a pivotal regulator of c-met, establishing it as a promising candidate for targeted drug development in the ongoing pursuit of effective therapeutic interventions.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Metilação , Proliferação de Células , Linhagem Celular Tumoral
20.
J Neurosci Res ; 102(1): e25254, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37814994

RESUMO

Ivermectin (IVM), a semi-synthetic macrolide parasiticide, has demonstrated considerable effectiveness in combating internal and external parasites, particularly nematodes and arthropods. Its remarkable ability to control parasites has earned it significant recognition, culminating in Satoshi Omura and William C. Campbell's receipt of the 2015 Nobel Prize in Physiology or Medicine for their contributions to the development of IVM. In recent years, investigations have revealed that IVM possesses antitumor properties. It can suppress the growth of various cancer cells, including glioma, through a multitude of mechanisms such as selective targeting of tumor-specific proteins, inducing programmed cell death, and modulation of tumor-related signaling pathways. Hence, IVM holds tremendous potential as a novel anticancer drug. This review seeks to provide an overview of the underlying mechanisms that enable IVM's capacity to suppress glioma. Furthermore, it aims to elucidate the challenges and prospects associated with utilizing IVM as a new anticancer agent.


Assuntos
Antineoplásicos , Glioma , Humanos , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Ivermectina/história , Glioma/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Prêmio Nobel , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...