Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Environ Manage ; 359: 121055, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701585

RESUMO

Globally, forest soils are considered as important sources and sinks of greenhouse gases (GHGs). However, most studies on forest soil GHG fluxes are confined to the topsoils (above 20 cm soil depths), with only very limited information being available regarding these fluxes in the subsoils (below 20 cm soil depths), especially in managed forests. This limits deeper understanding of the relative contributions of different soil depths to GHG fluxes and global warming potential (GWP). Here, we used a concentration gradient-based method to comprehensively investigate the effects of thinning intensity (15% vs. 35%) and nutrient addition (no fertilizer vs. NPK fertilizers) on soil GHG fluxes from the 0-40 cm soil layers at 10 cm depth intervals in a Chinese fir (Cunninghamia lanceolata) plantation. Results showed that forest soils were the sources of CO2 and N2O, but the sinks of CH4. Soil GHG fluxes decreased with increasing soil depth, with the 0-20 cm soil layers identified as the dominant producers of CO2 and N2O and consumers of CH4. Thinning intensity did not significantly affect soil GHG fluxes. However, fertilization significantly increased CO2 and N2O emissions and CH4 uptake at 0-20 cm soil layers, but decreased them at 20-40 cm soil layers. This is because fertilization alleviated microbial N limitation and decreased water filled pore space (WFPS) in topsoils, while it increased WFPS in subsoils, ultimately suggesting that soil WFPS and N availability (especially NH4+-N) were the predominant regulators of GHG fluxes along soil profiles. Generally, there were positive interactive effects of thinning and fertilization on soil GHG fluxes. Moreover, the 35% thinning intensity without fertilization had the lowest GWP among all treatments. Overall, our results suggest that fertilization may not only cause depth-dependent effects on GHG fluxes within soil profiles, but also impede efforts to mitigate climate change by promoting GHG emissions in managed forest plantations.


Assuntos
Fertilizantes , Gases de Efeito Estufa , Solo , Gases de Efeito Estufa/análise , Solo/química , Florestas , Metano/análise , Dióxido de Carbono/análise , Cunninghamia/crescimento & desenvolvimento , Aquecimento Global , Óxido Nitroso/análise , China
2.
Nat Prod Res ; : 1-8, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629167

RESUMO

Tripterygium wilfordii has been historically employed as a conventional botanical insecticide and a plant of medicinal significance. A new dihydroagarofuran sesquiterpene (1) and a new acyclic compound (2), along with seven known compounds (3-9), have been isolated from the aerial parts of Tripterygium wilfordii. The identification of the structures of novel compounds were accomplished through comprehensive spectroscopic analyses, encompassing HRESIMS, NMR, UV, IR, and a comparative analysis with spectroscopic data from compounds previously characterised. In in-vitro bioassay, compound 8 exhibited significant inhibitory activity for NO release in LPS-induced RAW 264.7 cells, with an IC50 value of 15.7 µM.

3.
Chem Biol Drug Des ; 102(6): 1643-1657, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37705131

RESUMO

Ursolic acid (UA) is a pentacyclic triterpenoid, which exhibits many biological activities, particularly in anti-cardiovascular and anti-diabetes. The further application of UA is greatly limited due to its low bioavailability and poor water solubility. Up to date, various UA derivatives have been designed to overcome these shortcomings. In this paper, the authors reviewed the development of UA derivatives as the anti-diabetes anti-cardiovascular reagents.


Assuntos
Triterpenos , Solubilidade , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Ácido Ursólico
4.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628743

RESUMO

Immunochromatographic assay (ICA) plays an important role in in vitro diagnostics because of its simpleness, convenience, fastness, sensitivity, accuracy, and low cost. The employment of magnetic nanoparticles (MNPs), possessing both excellent optical properties and magnetic separation functions, can effectively promote the performances of ICA. In this study, an ICA based on MNPs (MNP-ICA) has been successfully developed for the sensitive detection of carcinoembryonic antigen (CEA). The magnetic probes were prepared by covalently conjugating carboxylated MNPs with the specific monoclonal antibody against CEA, which were not only employed to enrich and extract CEA from serum samples under an external magnetic field but also used as a signal output with its inherent optical property. Under the optimal parameters, the limit of detection (LOD) for qualitative detection with naked eyes was 1.0 ng/mL, and the quantitative detection could be realized with the help of a portable optical reader, indicating that the ratio of optical signal intensity correlated well with CEA concentration ranging from 1.0 ng/mL to 64.0 ng/mL (R2 = 0.9997). Additionally, method comparison demonstrated that the magnetic probes were beneficial for sensitivity improvement due to the matrix effect reduction after magnetic separation, and the MNP-ICA is eight times higher sensitive than ICA based on colloidal gold nanoparticles. The developed MNP-ICA will provide sensitive, convenient, and efficient technical support for biomarkers rapid screening in cancer diagnosis and prognosis.


Assuntos
Antígeno Carcinoembrionário , Nanopartículas de Magnetita , Ouro , Anticorpos Monoclonais , Imunoensaio
5.
Sensors (Basel) ; 23(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447846

RESUMO

In the process of the modulation recognition of underwater acoustic communication signals, the multipath effect seriously interferes with the signal characteristics, reducing modulation recognition accuracy. The existing methods passively improve the accuracy from the perspective of selecting appropriate signal features, lacking specialized preprocessing for suppressing multipath effects. So, the accuracy improvement of the designed modulation recognition models is limited, and the adaptability to environmental changes is poor. The method proposed in this paper actively utilizes common synchronous signals in underwater acoustic communication as detection signals to achieve passive time reversal without external signals and designs a passive time reversal-autoencoder to suppress multipath effects, enhance signals' features, and improve modulation recognition accuracy and environmental adaptability. Firstly, synchronous signals are identified and estimated. Subsequently, a passive time reversal-autoencoder is designed to enhance power spectrum and square spectrum features. Finally, a modulation classification is performed using a convolutional neural network. The model is trained in simulation channels generated by Bellhop and tested in actual channels which are different from the training period. The average recognition accuracy of the six modulated signals is improved by 10% compared to existing passive modulation recognition methods, indicating good environmental adaptability as well.


Assuntos
Acústica , Comunicação , Simulação por Computador , Redes Neurais de Computação , Reconhecimento Psicológico
6.
Huan Jing Ke Xue ; 44(7): 4201-4210, 2023 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-37438317

RESUMO

Charcoal is a carbonaceous particulate matter with a highly aromatic structure produced by incomplete combustion, and it can cause persistent long-term effects on soil ecological functions. In this study, we determined soil organic carbon pools and associated enzyme activities following five years of different charcoal treatments[charcoal removal (B0), charcoal retained in situ (B1), and the addition of charcoal removed from B0(B2)] and the unburnt control (UB) in a recently harvested Pinus massoniana plantation subjected to broadcast burning. The results showed that dissolved organic carbon (DOC), microbial biomass carbon (MBC), coarse and fine particulate organic carbon (CPOC and FPOC), and recalcitrant carbon (RC) contents were significantly lower in B1 than those in UB soil (P<0.05). The MBC and FPOC contents of B2 soil were comparable to those of UB soil, which were significantly higher than those of B0 soil (P<0.001). There was no difference in MBC/TC between the B2 and UB soils, whereas MBC/TC was significantly lower in B0 than in UB soil (P<0.05). ß-glucosidase and peroxidase activities of B0, B1, and B2 soils were significantly lower than that of UB soil (P<0.01), and polyphenol oxidase activity was significantly lower in B0 and B2 soils than in UB soil (P<0.01). No significant difference in soil TC, DOC, readily oxidized carbon (ROC), CPOC, and RC content as well as associated enzyme activities was observed among the charcoal treatments (P>0.05). Redundancy analysis showed that sucrose and polyphenol oxidase were the key drivers influencing soil organic carbon fractions, accounting for 16.3% and 12.7% of the total variance, respectively. Overall, our findings indicated that fire-deposited charcoal played a positive role in enhancing soil microbial biomass carbon recovery, soil organic carbon accumulation, and stability, highlighting the importance of charcoal in the management of subtropical plantations in the future.


Assuntos
Carbono , Pinus , Carvão Vegetal , Solo , Catecol Oxidase , Matéria Orgânica Dissolvida
7.
J Asian Nat Prod Res ; 25(12): 1184-1190, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37178131

RESUMO

Two new pregnane glycosides (1 and 2), together with four known ones (3- 6), were isolated from the roots of Cynanchum auriculatum Royle ex Wight (Asclepiadaceae). On the basis of detailed spectroscopic analysis and chemical method, the structures of new compounds were characterized to be metaplexigenin 3-O-ß-D-cymaropyranosyl- (1→4)-α-L-diginopyranosyl-(1→4)-ß-D-cymaropyranoside (1), metaplexigenin 3-O-α-L-diginopyranosyl-(1→4)-ß-D-cymaropyranoside (2). All the isolated compounds (1-6) were tested for their in vitro inhibitory activity against the growth of human colon cancer cell lines HCT-116. Compounds 5 and 6 showed significant cytoxicities with IC50 values of 43.58 µM and 52.21 µM.


Assuntos
Cynanchum , Humanos , Cynanchum/química , Raízes de Plantas/química , Pregnanos/farmacologia , Pregnanos/química , Glicosídeos/farmacologia , Glicosídeos/química , Estrutura Molecular
8.
Front Plant Sci ; 14: 1139945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035087

RESUMO

Introduction: Nutrient resorption is a key mechanism to conserve nutrients and overcome nutrient limitation in perennial plants. As an important afforested tree species in subtropical regions, Pinus massoniana grows well in nutrient-poor environments, however, the age-related pattern of nutrient acquisition strategy and the underlying mechanisms in P. massoniana plantations remain unclear. Methods: In this study, concentrations of nitrogen (N) and phosphorus (P) were measured in green and senesced needles, roots and soil samples collected from P. massoniana plantations with different stand ages (9-, 17-, 26-, 34- and 43-year-old) in south China. From these samples, nutrient resorption efficiency (RE) and stoichiometry were calculated. Results: Needle PRE significantly decreased with stand age, while there was no clear pattern of NRE along the stand development. Green needle N:P in older stands was significantly lower than in younger ones. Senesced needle C:P and N:P significantly decreased with stand age. Root and soil available P concentrations were significantly higher in older stands than in younger ones, and PRE was negatively correlated with soil available P concentration. Discussion: There was a shift from "conservative consumption" to "resource spending" P-use strategy, and P limitation decreased with stand development of P. massoniana plantations. The results provide information of changes in nutrients dynamics, which is relevant for the sustainable management of subtropical forest plantations.

9.
Ying Yong Sheng Tai Xue Bao ; 34(3): 631-638, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37087645

RESUMO

Plants can alter soil microbial biomass and extracellular enzyme activities related with carbon (C), nitrogen (N), and phosphorus (P), through litter and root exudates, with consequences on soil carbon, nitrogen and phosphorus (P) cycling. However, it is not well known how the changes in soil phosphorus availability affect the relationships between plants and soil microorganisms. In this study, a factorial experiment was conducted to investigate the effects of Chinese fir (Cunninghamia lanceolata) planting and different levels of P addition (0, 1.95, 3.9, 7.8 and 15.6 g P·m-2·a-1) on soil microbial biomass and extracellular enzyme activities. The results showed that planting Chinese fir planting significantly altered soil microbial biomass and C- and N- and P-related extracellular enzyme activities, but the effects were dependent on P addition levels. Without P addition, Chinese fir planting significantly reduced soil nutrient availability and pH, which led to the aggravation of P limitation and lower soil microbial biomass. P addition relieved P limitation, and reduced soil acid phosphatase (ACP) activities by 30.0%, 30.5%, 35.3% and 47.1% with the increasing P addition level (1.95, 3.9, 7.8 and 15.6 g P·m-2·a-1). Under three P addition levels (1.95, 3.9 and 7.8 g P·m-2·a-1), the negative effects of Chinese fir planting on soil microbial growth were alleviated. Under the high P addition level (15.6 g P·m-2·a-1), the negative effects of Chinese fir planting on soil microbial growth occurred again due to soil N limitation. Taken together, Chinese fir planting and soil P availability generally affected soil microbial biomass and extracellular enzyme activities, and changed P limitation.


Assuntos
Cunninghamia , Biomassa , Solo/química , Fósforo , Microbiologia do Solo , Carbono , Nitrogênio/análise
10.
Ying Yong Sheng Tai Xue Bao ; 34(3): 770-776, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37087661

RESUMO

Insect herbivory in the forest canopy leads to a large amount of damaged leaves and frass input to soil, with consequence on soil carbon cycle. However, the influence of damaged leaves and frass from insect canopy herbivory on the soil priming effect is unclear. We examined the effects of leaf litter, leaf damage caused by Dendrolimus punctatus, and insect frass on soil priming effect by using the 13C natural abundance technique. The results showed that the addition of leaf litter, damaged leaves, and frass significantly increased native soil organic carbon mineralization, producing a positive priming effect. Moreover, significant differences were observed among treatments. The accumulative priming effect induced by frass was the largest, followed by damaged leaves, and that of leaf litter was the smallest. The priming effect was positively correlated with total P, condensed tannin, total phenolic content, and the ratio of condensed tannin to P (condensed tannin/P), and negatively correlated with C/N, lignin/N, C/P, and lignin/P in the early stage of incubation. There was a significant negative correlation between the priming effect and lignin content in the later stage of incubation. Our results indicated that damaged leaves and frass increased the magnitude of positive priming effect, which was influenced by different factors at different incubation stages. Our results would strengthen the understanding in the effects of insect herbivory on soil carbon cycling in forests, and improve the accuracy of the assessment of its effects on forest carbon sink.


Assuntos
Proantocianidinas , Solo , Animais , Carbono/análise , Florestas , Insetos , Lignina , Folhas de Planta , Solo/química , Mariposas , Resíduos
11.
Chin J Nat Med ; 21(3): 233-240, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37003645

RESUMO

The stem and branch extract of Tripterygium wilfordii (Celastraceae) afforded seven new dihydroagarofuran sesquiterpene polyesters [tripterysines A-G (1-7)] and eight known ones (8-15). The chemical structures of these new compounds were established based on combinational analysis of HR-ESI-MS and NMR techniques. The absolute configurations of tripterysines A-C (1-3) and E-G (5-7) were determined by X-ray crystallographic analysis and circular dichroism spectra. All the compounds were screened for their inhibitory effect on inflammation through determining their inhibitory effect on nitric oxide production in LPS-induced RAW 264.7 cells and the secretion of inflammatory cytokines TNF-α and IL-6 in LPS-induced BV2 macrophages. Compound 9 exhibited significant inhibitory activity on NO production with an IC50 value of 8.77 µmol·L-1. Moreover, compound 7 showed the strongest inhibitory effect with the secretion of IL-6 at 27.36%.


Assuntos
Sesquiterpenos , Tripterygium , Tripterygium/química , Ésteres/farmacologia , Interleucina-6 , Lipopolissacarídeos/farmacologia , Folhas de Planta/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Óxido Nítrico/análise , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Estrutura Molecular
12.
Nat Prod Res ; : 1-8, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752387

RESUMO

Two new aryltetralin-type lignans (1-2) were isolated from the dichloromethane fraction of 95% ethanol extract of Camellia oleifera fruit husk. Their structures were elucidated on the basis of spectroscopic analysis, and the absolute configurations of compounds 1-2 were determined by the comparison of measured ECD curves with the quantum chemical calculated ones. The new compounds were tested for their antioxidant activities and cytotoxicity against three human cancer cell lines (Huh-7, H460 and MCF-7). While compounds 1 and 2 only showed slight DPPH radical scavenging activities with the IC50 values of 38.68 ± 5.02 and 56.62 ± 1.49 µM, respectively.

13.
J Asian Nat Prod Res ; 25(9): 834-841, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36617869

RESUMO

A chemical investigation of 95% ethanol extract from the stem and branch of Tripterygium wilfordii has resulted in the isolation and characterization of two new compounds, one neolignan (1) and one phenylalanine derivative (2), as well as four known compounds (3-6). The structures of the new compounds were determined based on extensive spectroscopic analyses. The absolute configuration of compound 1 was defined by X-ray crystallographic analyses and electronic circular dichroism calculation. In addition, compounds 2 and 4-6 exhibited inhibitory effects against NO production in LPS-induced RAW 264.7 macrophages with the IC50 value ranging from 3.51 µM to 30.40 µM.


Assuntos
Óxido Nítrico , Tripterygium , Camundongos , Animais , Células RAW 264.7 , Tripterygium/química , Folhas de Planta/química , Macrófagos , Estrutura Molecular
14.
Emerg Microbes Infect ; 12(1): 2149352, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36395069

RESUMO

Coxsackievirus A16 (CA16), a main causative agent of hand, foot, and mouth disease (HFMD), has become a serious public health concern in the Asia-Pacific region. Here, we generated an anti-CA16 monoclonal antibody, DMA2017, derived from an epidemic strain CA16. Surprisingly, although DMA2017 could not neutralize the original and circulating CA16 strains in vitro, the passive transfer of DMA2017 (10 µg/g) could protect suckling mice from a lethal challenge with CA16 in vivo. Then, we confirmed the protective effect of DMA2017 relies on the Fc-dependent effector functions, such as antibody-dependent cellular cytotoxicity (ADCC). The linear epitope of DMA2017 was mapped by phage display technique to a conserved patch spanning residues 143-148 (NSHPPY) of the VP2 EF-loop of CA16. DMA2017 could inhibit the binding of the antibodies present in the sera of naturally infected children to CA16, indicating that the epitope of DMA2017 is immunodominant for CA16. Our results confirm, for the first time, that a potential preventive and therapeutic effect could be mediated by a non-neutralizing antibody elicited against CA16. These findings bring a hitherto understudied protective role of non-neutralizing antibodies during viral infections into the spotlight and provide a new perspective on the design and evaluation of CA16 vaccines.


Assuntos
Enterovirus Humano A , Enterovirus , Doença de Mão, Pé e Boca , Vacinas Virais , Animais , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , Doença de Mão, Pé e Boca/prevenção & controle , Epitopos , Anticorpos Monoclonais
15.
Sci Total Environ ; 858(Pt 1): 159807, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461568

RESUMO

Antibiotics have been widely used for improving human and animal health and well-being for many decades. However, the enormous antibiotic usage in agriculture especially for livestock leads to considerable quantities of antibiotic residues in associated food products and can reach potentially hazardous levels for consumers. Therefore, timely detection and systematical surveillance on residual antibiotics in food materials are of significance to minimize the negative impact caused by such unwanted antibiotic leftovers. To this end, we constructed a cloud-platform-based system (ARSCP) for comprehensive surveillance of antibiotic residues in food materials. With the system, we collected 126,560 samples from 68 chicken farms across China and detected the antibiotic residues using a rapid detection colorimetric commercial (Explorer 2.0) kit and UPLC-MS/MS. Only 108 (0.085 %) of the samples contained residual antibiotics exceeding the MRLs and all data were subjected to ARSCP system to provide a landscape of antibiotic residues in China. As a proof-of-concept, we provided an overview of residual antibiotics based on data from China, but the system is generally applicable to track and monitor the antibiotic residues globally when the data from other countries are incorporated. We used the combined Explorer 2.0 and MS data to construct ARSCP, an antimicrobial residue surveillance cloud platform for raw chicken samples. ARSCP can be used for rapid detection and real-time monitoring of antibiotic residues in animal food and provides both data management and risk warning functions. This system provides a solution to improve the management of facilities that must monitor antibiotic MRLs in food animal products that can reduce the pollution of antibiotics to the environment.


Assuntos
Anti-Infecciosos , Computação em Nuvem , Animais , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antibacterianos , Ração Animal , Progressão da Doença
16.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2593-2601, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36384592

RESUMO

Plant litter input has important influences on soil CO2 emission and soil organic carbon (SOC) formation in terrestrial ecosystem. However, it is not well known for the fate of carbon when exogenous organic matters with different chemical structures are added to soil with different textures. In this study, we added the uniformly 13C-labelled substrates of glucose, starch, and cellulose to red soil and sandy soil, and compared the net 13C accumulation and recovery and its proportions in soil releasing CO2, SOC, dissolved organic carbon (DOC) and microbial biomass carbon (MBC) pools. The results showed that δ13C values increased after exogenous substrate additions in CO2, SOC, DOC, and MBC, and that the peaks of δ13C in CO2 pool appeared delay with increasing chemical structure complexity. The fate of exogenous C and its contributions of different C pools were significantly influenced by exogenous C types, soil types, and incubation times. In sandy soil, the added exogenous C was more mineralized as CO2, with the net accumulation and recovery of 13C in CO2 pool decreasing in the order of glucose>starch>cellulose. In red soil, more exogenous C was transferred to SOC pool, with the net accumulation and recovery of 13C in SOC pool decreasing in the order of glucose>starch>cellulose. Our results implied that the chemical structure of exogenous substrates and soil texture together controlled the fate and accumulation of exogenous organic carbon.


Assuntos
Carbono , Solo , Solo/química , Carbono/química , Areia , Ecossistema , Dióxido de Carbono , Amido , Celulose , Glucose
17.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2602-2610, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36384593

RESUMO

Litter inputs can affect the mineralization of soil organic carbon (SOC). However, it is yet unknown how the input of leaf litter with different chemical properties drives SOC mineralization and priming effect. In this study, 13C-labeled leaf litter of six tree species were added to soil cores (10 cm depth) collected from a natural secondary forest in subtropical region. We examined the effects of different leaf litters on total soil CO2, litter-derived and soil-derived CO2 emission rates and accumulation and priming effect. We further examined the relationships between litter chemical properties and CO2 accumulation and priming effect. Our results showed that leaf litter addition increased total soil CO2 and soil-derived CO2 emission rates and accumulations, and that there were positive priming effects ranging from 68% to 128%. Soil organic carbon mineralization and priming effects varied among tree species. The Pearson correlation and stepwise multiple linear regression analysis showed that the litter-derived CO2 accumulation had negative correlation with leaf litter C, P and cellulose concentrations, whereas the soil-derived CO2 accumulation were positively correlated to litter C:N and lignin:N. The results implied that tree species could influence SOC mineralization and litter-induced priming effect. Thus it could mitigate soil C loss when we afforested plantation with high quality leaf litter in subtropical region.


Assuntos
Carbono , Solo , Solo/química , Carbono/análise , Dióxido de Carbono/análise , Florestas , Folhas de Planta/química , Árvores
18.
Heliyon ; 8(8): e10332, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36060997

RESUMO

Vernonia anthelmintica Willd (VA) is a popular medicinal plant used in local and traditional medicine to manage various disorders. In order to explore the phytochemical profile, antioxidant and enzyme modulatory activities of extracts prepared from the seeds of VA, different extraction methodologies, including modern (accelerated-ASE, ultrasound-UAE, and tissue smashing-TSE extractions) and traditional (maceration and Soxhlet) extractions, were employed and their effects on the activities of the extracts were investigated. The chemical compounds of the extracts were qualitatively analyzed by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UPLC-Orbitrap-MS) technique. Among them, 11 compounds were undoubtedly identified by comparison with reference substance, while 13 compounds were tentatively identified by comparison with literature data, including 8 phenolic acids, 14 flavonoids and 2 esters were identified in the extracts. Additionally, the quantitative analysis found that ASE showed the highest extraction efficiency. The antioxidant activity was determined in vitro via six standard assays. Two key enzymes related to the diseases of vitiligo (tyrosinase) and type II diabetes (α-glucosidase) were adopted to assess the activity of VA extracts against them. All extracts showed potent antioxidant ability with a predominance for that obtained by ASE, which corroborated with the high phenolic (22.62 ± 0.23 mg gallic acid equivalent (GAE)/g extract) and flavonoid contents (68.85 ± 0.25 mg rutin equivalent (RE)/g extract). The extracts obtained by ASE, UAE and SE could increase the tyrosinase activity and all the extracts displayed remarkable inhibitory activity against α-glucosidase. This study demonstrated that the VA extracts obtained by novel extraction techniques such as ASE, could be considered as a positive candidate to be utilized by the food and medical industries, not only for obtaining bioactive compounds to be used as natural antioxidants, but possibly also for its health benefits for therapeutic bio-product development.

19.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077387

RESUMO

Carbohydrate antigen 199 (CA199) is a serum biomarker which has certain value and significance in the diagnosis, prognosis, treatment, and postoperative monitoring of cancer. In this study, a lateral flow immunoassay based on europium (III) polystyrene time-resolved fluorescence microspheres (TRFM-based LFIA), integrated with a portable fluorescence reader, has been successfully establish for rapid and quantitative analysis of CA199 in human serum. Briefly, time-resolved fluorescence microspheres (TRFMs) were conjugated with antibody I (Ab1) against CA199 as detection probes, and antibody II (Ab2) was coated as capture element, and a "TRFMs-Ab1-CA199-Ab2" sandwich format would form when CA199 was detected by the TRFM-based LFIA. Under the optimal parameters, the detection limit of the TRFM-based LFIA for visible quantitation with the help of an ultraviolet light was 4.125 U/mL, which was four times lower than that of LFIA based on gold nanoparticles. Additionally, the fluorescence ratio is well linearly correlated with the CA199 concentration (0.00-66.0 U/mL) and logarithmic concentration (66.0-264.0 U/mL) for quantitative detection. Serum samples from 10 healthy people and 10 liver cancer patients were tested to confirm the performances of the point-of-care application of the TRFM-based LFIA, 20.0 U/mL of CA199 in human serum was defined as the threshold for distinguishing healthy people from liver cancer patients with an accuracy of about 60%. The establishment of TRFM-based LFIA will provide a sensitive, convenient, and efficient technical support for rapid screening of CA199 in cancer diagnosis and prognosis.


Assuntos
Neoplasias Hepáticas , Nanopartículas Metálicas , Biomarcadores Tumorais , Ouro , Humanos , Imunoensaio , Limite de Detecção , Microesferas
20.
Front Plant Sci ; 13: 950367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903223

RESUMO

Subtropical regions are currently experiencing a dramatic increase in nitrogen (N) deposition; however, the contributions of nitrification and denitrification processes to soil N2O emissions and the underlying mechanisms under increasing N deposition remain unclear. Therefore, a 15N-tracing laboratory experiment with four N application rates (0, 12.5, 25, and 50 µg 15N g-1 soil) was conducted to investigate the response of nitrification- and denitrification-derived N2O to N additions in an evergreen broad-leaved forest (BF) and a Pinus forest (PF) in the Wuyi Mountains in southeastern China. Moreover, the abundance of functional genes related to nitrification (amoA), denitrification (nirK, nirS, and nosZ), and soil properties were measured to clarify the underlying mechanisms. Results showed that nitrification-derived N2O emissions were generally decreased with increasing N input. However, denitrification-derived N2O emissions were a non-linear response to N additions, with maximum N2O emissions at the middle N application rate. Denitrification-derived N2O was the dominant pathway of N2O production, accounting for 64 to 100% of the total N2O fluxes. Soil NH4 +-N content and pH were the predominant factors in regulating nitrification-derived N2O emissions in BF and PF, respectively. Soil pH and the nirS abundance contributed the most to the variations of denitrification-derived N2O emissions in BF and PF, respectively. Our results suggest that N application has the potential to increase the contribution of denitrification to N2O production in subtropical forest soils. Changes in soil chemical properties induced by N addition are more important than the abundance of nitrification and denitrification functional genes in regulating soil nitrification- and denitrification-derived N2O emissions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...