Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Heliyon ; 10(3): e25791, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356534

RESUMO

Introduction: Acute-on-chronic liver failure (ACLF) is a clinical syndrome with high short-term mortality. ACLF has been increasingly studied in recent years; however, a bibliometric analysis of the entire ACLF field has not been conducted. This study assesses current global trends and hotspots in ACLF research. Materials and methods: The core Web of Science database was searched for all ACLF-related publications conducted during 2012-2022. The data included information on the author, country, author keywords, publication year, citation frequency, and references. Microsoft Excel was used to collate the data and calculate percentages. VOSviewer software was used for citation and density visualization analysis. Histogram rendering was performed using GraphPad Prism Version 8.0 and R software was used to supplement the analysis. Result: A total of 1609 ACLF-related articles from 67 different countries were identified. China contributed the most literature, followed by the United States. However, Chinese literature only had the 4th highest number of citations, indicating that cooperation with other countries needs to be strengthened. The Journal of Hepatology had the highest number of ACLF-related citations. Prognosis was one of the most common author keywords, which may highlight current research hotspots. Bacterial infection was a common keyword and was closely related to prognosis. Conclusion: This bibliometric analysis suggests that future research hotspots will focus on the interplay among bacterial infection, organ failure, and prognosis.

2.
Clin Transl Gastroenterol ; 15(3): e00680, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38240390

RESUMO

INTRODUCTION: In metabolic dysfunction-associated steatotic liver disease, the diagnostic efficacy of controlled attenuation parameter (CAP) was not very accurate in evaluating liver fat content. The aim of this study was to develop a score, based on CAP and conventional clinical parameters, to improve the diagnostic performance of CAP regarding liver fat content. METHODS: A total of 373 participants from 2 independent Chinese cohorts were included and divided into derivation (n = 191), internal validation (n = 75), and external validation (n = 107) cohorts. Based on the significant difference index between the 2 groups defined by the magnetic resonance imaging-proton density fat fraction (MRI-PDFF) in derivation cohort, the optimal model (CAP-BMI-AST score [CBST]) was screened by the number of parameters and the area under the receiver operating characteristic curve (AUROC). In the internal and external validation cohorts, the AUROC and corresponding 95% confidence intervals (CIs) were used to compare the diagnostic performance of CBST with that of CAP. RESULTS: We constructed the CBST = -14.27962 + 0.05431 × CAP - 0.14266 × body mass index + 0.01715 × aspartate aminotransferase. When MRI-PDFF was ≥20%, ≥10%, and ≥5%, the AUROC for CBST was 0.77 (95% CI 0.70-0.83), 0.89 (95% CI 0.83-0.94), and 0.93 (95% CI 0.88-0.98), which was higher than that for CAP respectively. In the internal validation cohort, the AUROC for CBST was 0.80 (95% CI 0.70-0.90), 0.95 (95% CI 0.91-1.00), and 0.98 (95% CI 0.94-1.00). The optimal thresholds of CBST were -0.5345, -1.7404, and -1.9959 for detecting MRI-PDFF ≥20%, ≥10%, and ≥5%, respectively. DISCUSSION: The CBST score can accurately evaluate liver steatosis and is superior to the CAP.


Assuntos
Técnicas de Imagem por Elasticidade , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Imageamento por Ressonância Magnética , Curva ROC
3.
Mol Cell Probes ; 73: 101944, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049041

RESUMO

Ubiquitin specific protease 5 (USP5) is a vital deubiquitinating enzyme that regulates various physiological functions by removing ubiquitin chains from target proteins. This review provides an overview of the structural and functional characteristics of USP5. Additionally, we discuss the role of USP5 in regulating diverse cellular processes, including cell proliferation, apoptosis, DNA double-strand damage, methylation, heat stress, and protein quality control, by targeting different substrates. Furthermore, we describe the involvement of USP5 in several pathological conditions such as tumors, pathological pain, developmental abnormalities, inflammatory diseases, and virus infection. Finally, we introduce newly developed inhibitors of USP5. In conclusion, investigating the novel functions and substrates of USP5, elucidating the underlying mechanisms of USP5-substrate interactions, intensifying the development of inhibitors, and exploring the upstream regulatory mechanisms of USP5 in detail can provide a new theoretical basis for the treatment of various diseases, including cancer, which is a promising research direction with considerable potential. Overall, USP5 plays a critical role in regulating various physiological and pathological processes, and investigating its novel functions and regulatory mechanisms may have significant implications for the development of therapeutic strategies for cancer and other diseases.


Assuntos
Endopeptidases , Neoplasias , Humanos , Proliferação de Células , Endopeptidases/genética , Endopeptidases/metabolismo , Neoplasias/genética , Ubiquitina/genética , Ubiquitina/metabolismo
4.
Front Immunol ; 14: 1193081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680624

RESUMO

Yolk sac-derived microglia and peripheral monocyte-derived macrophages play a key role during Parkinson's disease (PD) progression. However, the regulatory mechanism of microglia/macrophage activation and function in PD pathogenesis remains unclear. Recombination signal-binding protein Jκ (RBP-J)-mediated Notch signaling regulates macrophage development and activation. In this study, with an 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) hydrochloride-induced acute murine PD model, we found that Notch signaling was activated in amoeboid microglia accompanied by a decrease in tyrosine hydroxylase (TH)-positive neurons. Furthermore, using myeloid-specific RBP-J knockout (RBP-JcKO) mice combined with a PD model, our results showed that myeloid-specific disruption of RBP-J alleviated dopaminergic neurodegeneration and improved locomotor activity. Fluorescence-activated cell sorting (FACS) analysis showed that the number of infiltrated inflammatory macrophages and activated major histocompatibility complex (MHC) II+ microglia decreased in RBP-JcKO mice compared with control mice. Moreover, to block monocyte recruitment by using chemokine (C-C motif) receptor 2 (CCR2) knockout mice, the effect of RBP-J deficiency on dopaminergic neurodegeneration was not affected, indicating that Notch signaling might regulate neuroinflammation independent of CCR2+ monocyte infiltration. Notably, when microglia were depleted with the PLX5622 formulated diet, we found that myeloid-specific RBP-J knockout resulted in more TH+ neurons and fewer activated microglia. Ex vitro experiments demonstrated that RBP-J deficiency in microglia might reduce inflammatory factor secretion, TH+ neuron apoptosis, and p65 nuclear translocation. Collectively, our study first revealed that RBP-J-mediated Notch signaling might participate in PD progression by mainly regulating microglia activation through nuclear factor kappa-B (NF-κB) signaling.


Assuntos
NF-kappa B , Doença de Parkinson , Animais , Camundongos , Microglia , Ativação de Macrófagos , Transdução de Sinais , Dopamina
5.
Nutr Metab (Lond) ; 20(1): 28, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244987

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a chronic progressive disease that can progress to non-alcoholic steatohepatitis (NASH). Animal models are important tools for basic NASH research. Immune activation plays a key role in liver inflammation in patients with NASH. We established a high-trans fat, high-carbohydrate, and high-cholesterol, high-cholate diet-induced (HFHCCC) mouse model. C57BL/6 mice were fed a normal or HFHCCC diet for 24 weeks, and the immune response characteristics of this model were evaluated. The proportion of immune cells in mouse liver tissues was detected by immunohistochemistry and flow cytometry, Multiplex bead immunoassay and Luminex technology was used to detecte the expression of cytokines in mouse liver tissues. The results showed that mice treated with HFHCCC diet exhibited remarkably increased hepatic triglycerides (TG) content, and the increase in plasma transaminases resulted in hepatocyte injury. Biochemical results showed that HFHCCC induced elevated hepatic lipids, blood glucose, insulin; marked hepatocyte steatosis, ballooning, inflammation, and fibrosis. The proportion of innate immunity-related cells, including Kupffer cells (KCs), neutrophils, dendritic cells (DCs), natural killer T cells (NKT), and adaptive immunity-related CD3+ T cells increased; interleukin-1α (IL-1α), IL-1ß, IL-2, IL-6, IL-9, and chemokines, including CCL2, CCL3, and macrophage colony stimulating factor (G-CSF) increased. The constructed model closely approximated the characteristics of human NASH and evaluation of its immune response signature, showed that the innate immune response was more pronounced than adaptive immunity. Its use as an experimental tool for understanding innate immune responses in NASH is recommended.

6.
Front Cell Infect Microbiol ; 12: 827516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865826

RESUMO

Gut-derived lipopolysaccharide (LPS) leaking through the dysfunctional intestinal barrier contributes to the onset of non-alcoholic steatohepatitis (NASH) by triggering inflammation in the liver. In the present study, a combination consisting of Atractylodes macrocephala polysaccharide (A), chlorogenic acid (C), and geniposide (G) (together, ACG), was shown to ameliorate NASH in mice and reduce hepatic LPS signaling and endotoxemia without decreasing the abundance of identified Gram-negative bacteria through restoring the intestinal tight junctions. Our data indicated that inhibition of LPS gut leakage by the ACG combination contributed to its amelioration of NASH.


Assuntos
Atractylodes , Hepatopatia Gordurosa não Alcoólica , Animais , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Endotoxinas , Iridoides , Lipopolissacarídeos , Fígado , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
7.
Clin Transl Med ; 12(4): e691, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35474446

RESUMO

BACKGROUND: Gastric carcinoma (GC) is one of the most deadly diseases due to tumour metastasis and resistance to therapy. Understanding the molecular mechanism of tumour progression and drug resistance will improve therapeutic efficacy and develop novel intervention strategies. METHODS: Differentially expressed long non-coding RNAs (lncRNAs) in clinical specimens were identified by LncRNA microarrays and validated in different clinical cohorts by quantitative real-time polymerase chain reaction (qRT-PCR), in situ hybridisation and bioinformatics analysis. Biological functions of lncRNA were investigated by using cell proliferation assays, migration assays, xenograft tumour models and bioinformatics analysis. Effects of lncSLCO1C1 on GC cell survival were assessed by comet assays and immunofluorescence assays. Underlying molecular mechanisms were further explored by using a number of technologies including RNA pull-down, mass spectrometry analysis, RNA immunoprecipitation, co-immunoprecipitation, miRNA sequencing, luciferase reporter assays and molecular modelling. RESULTS: LncSLCO1C1 was highly upregulated in GC tissue samples and associated with GC patients' poor overall survival. Overexpression of lncSLCO1C1 promoted proliferation and migration, whereas decreased lncSLCO1C1 expression produced the opposite effects. lncSLCO1C1 also mediated tumour resistance to chemotherapy with oxaliplatin by reducing DNA damage and increasing cell proliferation. Despite sequence overlapping between lncSLCO1C1 and PDE3A, alternations of PDE3A expression had no effect on the GC cell progression, indicating that lncSLCO1C1, not PDE3A, related with the progression of GC cells. Mechanistically, lncSLCO1C1 serves as a scaffold for the structure-specific recognition protein 1 (SSRP1)/H2A/H2B complex and regulates the function of SSRP1 in reducing DNA damage. Meanwhile, lncSLCO1C1 functions as a sponge to adsorb miR-204-5p and miR-211-5p that target SSRP1 mRNA, and thus increases SSRP1 expression. Patients with high expressions of both lncSLCO1C1 and SSRP1 have poor overall survival, highlighting the role of lncSLCO1C1 in GC progression. CONCLUSIONS: LncSLCO1C1 promotes GC progression by enhancing cell growth and preventing DNA damage via interacting and scaffolding the SSRP1/H2A/H2b complex and absorbing both miR-211-5p and miR-204-5p to increase SSRP1 expression.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Transportadores de Ânions Orgânicos , Oxaliplatina/farmacologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
8.
Cell Rep ; 38(10): 110451, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263597

RESUMO

Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) play critical roles in tumorigenesis. However, the mechanisms underlying MDSC and TAM development and function remain unclear. In this study, we find that myeloid-specific activation of Notch/RBP-J signaling downregulates lactate transporter MCT2 transcription via its downstream molecule Hes1, leading to reduced intracellular lactate levels, blunted granulocytic MDSC (G-MDSC) differentiation, and enhanced TAM maturation. We identify c-Jun as a novel intracellular sensor of lactate in myeloid cells using liquid-chromatography-mass spectrometry (LC-MS) followed by CRISPR-Cas9-mediated gene disruption. Meanwhile, lactate interacts with c-Jun to protect from FBW7 ubiquitin-ligase-mediated degradation. Activation of Notch signaling and blockade of lactate import repress tumor progression by remodeling myeloid development. Consistently, the relationship between the Notch-MCT2/lactate-c-Jun axis in myeloid cells and tumorigenesis is also confirmed in clinical lung cancer biopsies. Taken together, our current study shows that lactate metabolism regulated by activated Notch signaling might participate in MDSC differentiation and TAM maturation.


Assuntos
Células Supressoras Mieloides , Carcinogênese/genética , Humanos , Ácido Láctico , Células Mieloides , Transdução de Sinais , Fatores de Transcrição HES-1
9.
Chin J Integr Med ; 28(1): 28-35, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32915427

RESUMO

OBJECTIVE: To compare the circular pathological changes of chronic hepatitis B (CHB) patients according to the tongue diagnosis. METHODS: Totally 41 CHB patients with typical white tongue coating (WTC) or yellow tongue coating (YTC) were enrolled and 14 healthy volunteers with normal tongue manifestation served as controls. The mRNA expression of peripheral leukocytes was detected by GeneChips, and 9 genes were randomly selected for expression validation. Circular metabolites were detected by gas chromatographymass spectrometry. Biological information was analyzed based on ingenuity pathways analysis or metabolomics database and the integrated networks were constructed by ClueGO. RESULTS: A total of 945 and 716 differentially expressed genes were found in patients with WTC and YTC relative to healthy volunteers respectively. The biological information analysis indicated that CHB patients had obviously increased functions in cell death, apoptosis and necrosis (Z-score ⩾2, P<0.05) and decreased activation in T lymphocytes (Z-score ⩽-2, P<0.05), regardless of the tongue manifestation. Compared to patients with WTC, the YTC patients were predicted to be more active in functions related to virus replication (Z-score ⩾2, P<0.05), and the content of circular fatty acids, such as oleic acid (P=0.098) and lauric acid (P=0.035), and citric acid cycle-related metabolites were higher in the YTC patients (P<0.1). The integrated analysis based on differential genes and metabolites indicated that the most difference in the biological function network between the WTC and YTC patients was tumor necrosis factor receptor associated factor 6 mediated-nuclear factor kappa-B activation process. CONCLUSIONS: CHB patients with YTC had more severe inflammation and fatty acids metabolism aberrant than patients with WTC. The results facilitate the modern pathological annotation of Chinese medicine tongue diagnosis theory and provide a reference for the interpretation of pharmacological mechanisms of Chinese medicine treatment.


Assuntos
Hepatite B Crônica , Ácidos Graxos , Vírus da Hepatite B/genética , Humanos , Metabolômica , Linfócitos T , Língua
10.
Chin J Integr Med ; 28(6): 501-508, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33420581

RESUMO

OBJECTIVE: To explore the molecular bases of Chinese medicine (CM) syndrome classification in chronic hepatitis B (CHB) patients in terms of DNA methylation, transcription and cytokines. METHODS: Genome-wide DNA methylation and 48 serum cytokines were detected in CHB patients (DNA methylation: 15 cases; serum cytokines: 62 cases) with different CM syndromes, including dampness and heat of Gan (Liver) and gallbladder (CHB1, DNA methylation: 5 cases, serum cytokines: 15 cases), Gan stagnation and Pi (Spleen) deficiency (CHB2, DNA methylation: 5 cases, serum cytokines: 15 cases), Gan and Shen (Kidney) yin deficiency (CHB3, DNA methylation: 5 cases, serum cytokines: 16 cases), CHB with hidden symptoms (HS, serum cytokines:16 cases) and healthy controls (DNA methylation: 6 cases). DNA methylation of a critical gene was further validated and its mRNA expression was detected on enlarged samples. Genome-wide DNA methylation was detected using Human Methylation 450K Assay and furthered verified using pyrosequencing. Cytokines and mRNA expression of gene were evaluated using multiplex biometric enzyme-linked immunosorbent assay (ELISA)-based immunoassay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR), respectively. RESULTS: Totally 28,667 loci, covering 18,403 genes were differently methylated among CHB1, CHB2 and CHB3 (P<0.05 and |Δß value| > 0.17). Further validation showed that compared with HS, the hg19 CHR6: 29691140 and its closely surrounded 2 CpG loci were demethylated and its mRNA expressions were significantly up-regulated in CHB1 (P<0.05). However, they remained unaltered in CHB2 (P>0.05). Levels of Interleukin (IL)-12 were higher in CHB3 and HS than that in CHB1 and CHB2 groups (P<0.05). Levels of macrophage inflammatory protein (MIP)-1α and MIP-1ß were higher in CHB3 than other groups and leukemia inhibitory factor level was higher in CHB1 and HS than CHB2 and CHB3 groups (P<0.05). IL-12, MIP-1α and MIP-1ß concentrations were positively correlated with human leukocyte antigen F (HLA-F) mRNA expression (R2=0.238, P<0.05; R2=0.224, P<0.05; R=0.447, P<0.01; respectively). Furthermore, combination of HLA-F mRNA and differential cytokines greatly improved the differentiating accuracy among CHB1, CHB2 and HS. CONCLUSIONS: Demethylation of CpG loci in 5' UTR of HLA-F may up-regulate its mRNA expression and HLA-F expression was associated with IL-12, MIP-1α and MIP-1ß levels, indicating that HLA-F and the differential cytokines might jointly involve in the classification of CM syndromes in CHB. REGISTRATION NO: ChiCTR-RCS-13004001.


Assuntos
Citocinas , Hepatite B Crônica , Quimiocina CCL3/genética , Quimiocina CCL4/genética , Citocinas/genética , Metilação de DNA/genética , Antígenos HLA , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/genética , Antígenos de Histocompatibilidade Classe I , Humanos , Interleucina-12/genética , Medicina Tradicional Chinesa , RNA Mensageiro , Síndrome
11.
ACS Appl Mater Interfaces ; 13(46): 55700-55711, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34752083

RESUMO

Currently, lithium-ion batteries (LIBs) are assembled with polar electrolytes; thus, resulting SEI layers are dominated with organics. Herein, a low-polarity electrolyte is formulated with a low-polarity solvent (tetraethyl silicate, TEOS) and a non-polar inert shielding co-solvent (cyclohexane, CYH); solvation behaviors of lithium salt are investigated. The use of such a low-polarity solvent is found to improve the fraction of anions in the solvation sheath of Li+, and the presence of the non-polar co-solvent further shields the reductive decomposition of the solvent on the anode. The resulting SEI layer is relatively rich in LiF and has a 3D cross-linked Si-O network as a skeleton from the decomposition of TEOS molecules, which is more robust to tolerate the damage from the volume expansion of silicon. A Si-nanoparticle-based anode in such a low-polarity electrolyte delivers a capacity as high as 1491 mAh g-1 after 200 cycles, outperforming those in the commercial polar electrolytes.

12.
Biomed Res Int ; 2021: 6615881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095305

RESUMO

The incidence of nonalcoholic steatohepatitis (NASH) is increasing worldwide. Activation of Kupffer cells (KCs) is central to the development of diet-induced NASH. We investigated whether a combination of two active chemical components, geniposide and chlorogenic acid (GC), at a specific ratio (67 : 1), ameliorates diet-induced NASH and the underlying mechanisms involved. C57BL/6J mice exposed to a high-fat and high-cholesterol (HFHC) diet containing cholesterol, choline, and high-sugar drinking water, as well as RAW264.7 cells stimulated with lipopolysaccharide (LPS) were studied. The combination exerted a therapeutic effect on HFHC-induced NASH in mice. Simultaneously, GC was found to reduce the expression of cytokines secreted by hepatic macrophages, including tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), IL-1ß, IL-6, monocyte chemotactic protein 1 (MCP-1), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Moreover, GC reduced the number of KCs expressing F4/80. Furthermore, TNF-α, inducible nitric oxide synthase (INOS), IL-1ß, and IL-6 mRNA and TNF-α protein expression levels were suppressed upon GC treatment in RAW264.7 cells. Our findings suggest that GC has a strong anti-inflammatory effect in NASH, and this effect can be attributed to the suppression of KC activity in the liver.


Assuntos
Ácido Clorogênico/farmacologia , Iridoides/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , China , Ácido Clorogênico/metabolismo , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Quimioterapia Combinada/métodos , Iridoides/metabolismo , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Células RAW 264.7
13.
Front Pharmacol ; 12: 653641, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017254

RESUMO

Background: Non-alcoholic fatty liver disease (NAFLD), characterized by the excessive accumulation of hepatic triglycerides (TGs), has become a worldwide chronic liver disease. But efficient therapy keeps unsettled. Our previous works show that geniposide and chlorogenic acid combination (namely the GC combination), two active chemical components combined with a unique ratio (67.16:1), presents beneficial effects on high-fat diet-induced NAFLD rodent models. Notably, microarray highlighted the more than 5-fold down-regulated SCD-1 gene in the GC combination group. SCD-1 is an essential lipogenic protein for monounsaturated fatty acids' biosynthesis and serves as a key regulatory enzyme in the last stage of hepatic de novo lipogenesis (DNL). Methods: NAFLD mice model was fed with 16 weeks high-fat diet (HFD). The pharmacological effects, primarily on hepatic TG, TC, FFA, and liver enzymes, et al. of the GC combination and two individual components were evaluated. Furthermore, hepatic SCD-1 expression was quantified with qRT-PCR, immunoblotting, and immunohistochemistry. Finally, the lentivirus-mediated over-expressed cell was carried out to confirm the GC combination's influence on SCD-1. Results: The GC combination could significantly reduce hepatic TG, TC, and FFA in NAFLD rodents. Notably, the GC combination presented synergetic therapeutic effects, compared with two components, on normalizing murine hepatic lipid deposition and disordered liver enzymes (ALT and AST). Meanwhile, the robust SCD-1 induction induced by HFD and FFA in rodents and ALM-12 cells was profoundly blunted, and this potent suppression was recapitulated in lentivirus-mediated SCD-1 over-expressed cells. Conclusion: Taken together, our data prove that the GC combination shows a substantial and synergetic anti-lipogenesis effect in treating NAFLD, and these amelioration effects are highly associated with the potent suppressed hepatic SCD-1 and a blunted DNL process.

14.
ACS Appl Mater Interfaces ; 13(19): 22567-22576, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33945259

RESUMO

A supramolecular polymer, poly(N-acryloyl glycinamide) (PNAGA), with a bisamide group on each side of the chain forming multiple amide-hydrogen bonds was synthesized in this work as a binder for silicon (Si)-based anodes. This supramolecular polymer binder with improved mechanical properties presents good interfacial adhesion with Si particles forming hydrogen bonds and enhances the adhesive strength between the electrode material film and the copper current collector. Benefiting from the highly stable inter- and intramolecular multiple amide-hydrogen bonds of the PNAGA binder, the electrode structure maintains integrity and a stable solid electrolyte interphase (SEI) layer is formed on the surface of Si particles. The effect of different binders on the composition of the SEI film was also investigated by X-photoelectron spectroscopy (XPS) characterization. In comparison with polyacrylamide (PAM), which has a similar structure to PNAGA, and the traditional sodium alginate (SA) binder, the Si electrode containing the PNAGA binder shows improved electrochemical performance. The capacity retention is 84% after 100 cycles at 420 mA g-1, and the capacity remains at 1942.6 mAh g-1 after 400 cycles at 1260 mA g-1. Even with a mass loading of 1.2 mg cm-2 Si, the electrode with the PNAGA binder exhibits high initial areal capacity (2.64 mAh cm-2) and good cycling performance (81% capacity retention after 50 cycles). Moreover, the application of the PNAGA binder also brings a stable cycle performance to the commercial Si-graphite (SiC) anode material.

15.
ACS Appl Mater Interfaces ; 13(1): 639-649, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33356103

RESUMO

Binders play a crucial role in the development of silicon (Si) anodes for lithium-ion batteries with high specific energy. The large volume change of Si (∼300%) during repeated discharge and charge processes causes the destruction and separation of electrode materials from the copper (Cu) current collector and ultimately results in poor cycling performance. In the present study, we design and prepare hydrogen-bonding cross-linked thiourea-based polymeric binders (denoted CMC-co-SN) in consideration of their excellent binding interaction with the Cu current collector and low cost as well. The CMC-co-SN binders are formed through in situ thermopolymerization of chain-type carboxymethylcellulose sodium (CMC) with thiourea (SN) in the drying process of Si electrode disks. A tight and physical interlocked layer between the CMC-co-SN binder and Cu current collector is derived from a dendritic nonstoichiometric copper sulfide (CuxS) layer on the interface and enhances the binding of electrode materials with the Cu current collector. When applying the CMC-co-SN binders to micro- (∼3 µm) (µSi) and nano- (∼50 nm) (nSi) Si particles, the Si anodes exhibit high initial Coulomb efficiency (91.5% for µSi and 83.2% for nSi) and excellent cyclability (1121 mA h g-1 for µSi after 140 cycles and 1083 mA h g-1 for nSi after 300 cycles). The results demonstrate that the CMC-co-SN binders together with a physical interlocked layer have significantly improved the electrochemical performance of Si anodes through strong binding forces with the current collector to maintain electrode integrity and avoid electric contact loss.

16.
Biomed Res Int ; 2020: 1704960, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204683

RESUMO

OBJECTIVE: To use network pharmacology and molecular docking technology in predicting the main active ingredients and targets of Qushi Huayu Decoction (QHD) treatment in Nonalcoholic Fatty Liver Disease (NAFLD) and explore the potential mechanisms of its multi-component-multi-target-multi-pathway. MATERIALS AND METHODS: The main chemical components of QHD were searched using traditional Chinese medicine system pharmacology technology platform (TCMSP) and PubChem database. The main chemical components of the prescription were ADMET screened by the ACD/Labs software. The main active ingredient was screened by 60% oral bioavailability, and 60% of "bad" ingredients were removed from the drug-like group. Swiss Target Prediction, the SEA, and HitPick systems were sequentially used to search for the target of each active ingredient, and a network map of the QHD's target of the active ingredient was constructed. Genome annotation database platforms (GeneCards, OMIM, and DisGeNET) were used to predict action targets related to fatty liver disease. "Drug-Disease-Target" network diagram could be visualized with the help of Cytoscape (3.7.1) software. UniProt and STRING database platforms were used to build a protein interaction network. The KEGG signal pathway and DAVID platform were analyzed for biological process enrichment. RESULTS: A total of 128 active ingredients and 275 corresponding targets in QHD were discovered through screening. 55 key target targets and 27 important signaling pathways were screened, such as the cancer pathway, P13K-AKT signaling pathway, PPAR signaling pathway, and other related signaling pathways. CONCLUSIONS: The present study revealed the material basis of QHD and discussed the pharmacological mechanism of QHD in fatty liver, thus providing a scientific basis for the clinical application and experimental research of QHD in the future.


Assuntos
Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento Molecular , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Ontologia Genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Fosforilação/efeitos dos fármacos , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo , Transdução de Sinais , Triglicerídeos/metabolismo
17.
Life Sci ; 261: 118457, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32961235

RESUMO

AIMS: Liraglutide, a glucagon-like peptide-1(GLP-1) analog, is effective for the treatment of type II diabetes and nonalcoholic fatty liver disease (NAFLD). It was proved that gut microbiome plays a role in the development of NAFLD. This study aims to observe the therapeutic effect of liraglutide on nonalcoholic fatty liver (NAFL) in mice and effect on the gut microbial community. MAIN METHODS: The db/db mice were used as the NAFL model, and lactulose was used as the positive control drug. Hepatic triglyceride, liver histopathology, and indices of glucolipid metabolism, including fasting blood glucose, fasting insulin, insulin resistance index and blood lipids were evaluated after treatment of liraglutide or lactulose for four weeks. The colonic microbiome of the mice was analyzed by 16S rRNA gene sequencing. KEY FINDINGS: Liraglutide significantly reduced the hepatic triglyceride (TG) content, alanine aminotransferase (ALT) activity, fasting blood glucose, insulin resistance and serum low density lipoprotein (LDL) in the db/db mice. In terms of hepatic pathologies, hepatic steatosis was significantly improved after liraglutide treating. Microbiome analysis revealed that liraglutide significantly increased the abundance of Akkermansia, Romboutsia, norank_f_Bacteroidales_S24-7_group, and decreased the abundance of Klebsiella, Anaerotruncus, Bacteroides, Lachnospiraceae_UCG-001, Lachnospiraceae_NK4A136_group, Ruminiclostridium, uncultured_f__Ruminococcaceae, and Desulfovibrio. SIGNIFICANCE: The results of the present study suggested that liraglutide had a certain therapeutic effect on fatty liver in db/db mice and had an impact on the composition of the intestinal microflora, especially some bacteria related to glucolipid metabolism and intestinal inflammation. Affecting gut microbiome might be a potential mechanism of liraglutide in treating NAFL.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Liraglutida/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo
18.
J Immunother Cancer ; 8(2)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32948650

RESUMO

BACKGROUND: Accumulating evidence has shown that tumor-associated macrophages (TAMs) play a critical role in tumor progression. Targeting TAMs is a potential strategy for tumor immunotherapy. However, the mechanism underlying the TAM phenotype and function needs to be resolved. Our previous studies have demonstrated that miR-125a can reverse the TAM phenotype toward antitumor. Meanwhile, we have found that miR-125a and miR-99b cluster in the first intron of the same host gene, and are transcribed simultaneously in bone marrow-derived macrophages (BMDMs) following LPS+IFNγ stimulation. However, it remains unclear whether miR-99b by itself can exert an antitumor effect by regulating macrophage phenotype. METHODS: miR-99b and/or miR-125a were delivered into TAMs of orthotopic hepatocellular carcinoma (HCC) or subcutaneous Lewis lung cancer (LLC) mice. The effect of treatment was evaluated by live imaging, TUNEL staining and survival tests. The phenotype of the immune cells was determined by qRT-PCR, ELISA, western blot and FACS. The capability of miR-99b-mediated macrophage phagocytosis and antigen presentation was detected by FACS and immunofluorescence staining. The underlying molecular mechanism was examined by qRT-PCR, reporter assay and western blot, and further verified in the tumor model. The expression of miR-99b and its target genes was determined in TAMs sorted from tumor and adjacent tissues in patients with liver cancer. RESULTS: Targeted delivery of miR-99b and/or miR-125a into TAMs significantly impeded the growth of HCC and LLC, especially after miR-99b delivery. More importantly, the delivery of miR-99b re-educated TAM toward antitumor phenotype with enhanced immune surveillance. Further investigation of mechanisms showed that macrophage-specific overexpression of miR-99b promoted M1 while suppressing M2 macrophage polarization by targeting κB-Ras2 and/or mTOR, respectively. miR-99b-overexpressed M1 macrophage was characterized by stronger capability of phagocytosis and antigen presentation. Additionally, delivery of simTOR or siκB-Ras2 into TAMs inhibited miR-99b antagomir-triggered tumor growth. Finally, miR-99b expression was lower in TAMs of patients with liver cancer than that in adjacent tissues, while the expression of κB-Ras2 and mTOR was reversed. CONCLUSIONS: Our results reveal the mechanism of miR-99b-mediated TAM phenotype, indicating that TAM-targeted delivery of miR-99b is a potential strategy for cancer immunotherapy.


Assuntos
Ativação de Macrófagos/fisiologia , MicroRNAs/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Fenótipo , Transfecção
19.
Aging (Albany NY) ; 12(14): 14949-14965, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32701483

RESUMO

Hepatitis B virus (HBV) infection is an important factor causing hepatocellular carcinoma (HCC). The aim of this study was to investigate the metabolic characteristics and related metabolic enzyme changes during the progression from chronic hepatitis B (CHB) to liver cirrhosis (LC) and, ultimately, to HCC. An untargeted metabolomics assay was performed in plasma from 50 healthy volunteers, 43 CHB patients, 67 LC patients, and 39 HCC patients. A total of 24 differential metabolites (DMs) were identified. Joint pathway analysis suggested striking changes in amino acid metabolism and lipid metabolism from CHB to HCC. The panel of L-serine, creatine and glycine distinguished LC from CHB, and L-serine, cystathionine, creatine and linoleic acid distinguished HCC from LC. Bioinformatic analysis of publicly available data showed that differential metabolite profile-associated enzyme genes, including alanine-glyoxylate aminotransferase-2 (AGXT2), D-amino-acid oxidase (DAO), and cystathionine gamma-lyase (CTH), were downregulated, while bisphosphoglycerate mutase (BPGM), cystathionine-ß-synthase (CBS), phosphoserine phosphatase (PSPH) and acyl-CoA thioesterase 7 (ACOT7) were upregulated, in HCC, all of which correlated with a poor prognosis for HCC patients. Our results indicated that serum metabolites and related enzymes are of considerable significance for the diagnosis and prognosis of HCC and can provide a theoretical basis and therapeutic index for future diagnosis and treatment.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Redes e Vias Metabólicas/genética , Adulto , Bisfosfoglicerato Mutase/metabolismo , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/patologia , D-Aminoácido Oxidase/metabolismo , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Hepatite B Crônica/sangue , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/enzimologia , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Palmitoil-CoA Hidrolase/metabolismo , Prognóstico , Transaminases/metabolismo
20.
Nutr Metab (Lond) ; 17: 40, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508961

RESUMO

BACKGROUND AND AIMS: Even Non-alcoholic steatohepatitis (NASH) has been becoming the key role in process of liver fibrosis or cirrhosis, no any NASH involving liver fibrosis mice model which consistent with the mechanisms of fatty acid and glucose metabolism disorder was widely accepted. Here, we established a mouse model of nonalcoholic steatohepatitis (NASH) with liver fibrosis using a high-fat, high-carbohydrate diet (HFHC) and analyzed the potential pathogenesis using a transcriptome microarray. METHODS: Fifty mice were stratified by weight and randomly divided into the HFHC model and control (Con) groups. Ten mice were sacrificed at the beginning of the experiments, 10 mice of HFHC and Con group were euthanized at the end of 20 and 30 weeks. The following analyses were performed: biochemical analysis; histological assessment; evaluation of hepatic type I collagen (Col-I), α-smooth muscle actin (α-SMA) and transforming growth factor-ß1 (TGF-ß1) protein and mRNA expression levels; and transcriptomic gene chip analysis. RESULTS: Compared with the Con group at each time point, the body weight and liver wet weight of the HFHC model group of mice were significantly higher. At 30th weeks, alanine aminotransferase (ALT), aspartate aminotransferase (AST), fasting blood glucose (FBG) and fasting insulin (FINS) levels or activities and the triglyceride (TG) and hydroxyproline (HYP) content in the HFHC model group were significantly elevated. Severe steatosis was present in the liver tissues contributed from the HFHC group of mice. Typically, substantial perisinusoidal fibrosis with a cage-like structure and bridging formations were observed in the mice liver in HFHC group. Col-I, α-SMA and TGF-ß1 protein and mRNA expression levels in liver tissues of HFHC mice dramatically increased over time. Compared with the Con group, the HFHC group had 151 differentially expressed genes that were involved in 41 signaling pathways. CONCLUSIONS: After keeping 30 weeks HFHC diet treatment, the mice exhibited substantial liver fibrosis, hepatic steatosis, ballooning degeneration and inflammation. Basing on the transcriptome microarray assays, the experimental NASH involving liver fibrosis potentially related to dramatically changed ECM-receptor interaction, Toll-like receptor signaling and other signaling pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...