Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Nutr ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693451

RESUMO

PURPOSE: To explore the joint association of dietary patterns and adiposity with colorectal cancer (CRC), and whether adiposity mediates the relationship between dietary patterns and CRC risk, which could provide deeper insights into the underlying pathogenesis of CRC. METHODS: The data of 307,023 participants recruited between 2006 and 2010 were extracted from the UK Biobank study. Healthy diet scores were calculated based on self-reported dietary data at baseline, and participants were categorized into three groups, namely, low, intermediate, and high diet score groups. Cox regression models with hazard ratios (HRs) and 95% confidence intervals (CIs) were used to estimate the effects of the healthy diet score on CRC incidence, adjusting for various covariates. Furthermore, the mediation roles of obesity and central obesity between the healthy diet score and CRC risk were assessed using a counterfactual causal analysis based on Cox regression model. Additionally, joint association between dietary patterns and adiposity on CRC risks was assessed on the additive and multiplicative scales. RESULTS: Over a median 6.2-year follow-up, 3,276 participants developed CRC. After adjusting for sociodemographic and lifestyle factors, a lower risk of CRC incidence was found for participants with intermediate (HR = 0.83, 95% CI: 0.72 to 0.95) and high diet scores (HR = 0.73, 95% CI: 0.62 to 0.87) compared to those with low diet scores. When compared with the low diet score group, obesity accounted for 4.13% and 7.93% of the total CRC effect in the intermediate and high diet score groups, respectively, while central obesity contributed to 3.68% and 10.02% of the total CRC risk in the intermediate and high diet score groups, respectively. The mediating effect of adiposity on CRC risk was significant in men but not in women. Concurrent unhealthy diet and adiposity multiplied CRC risk. CONCLUSION: Adiposity-mediated effects were limited in the link between dietary patterns and CRC incidence, implying that solely addressing adiposity may not sufficiently reduce CRC risk. Interventions, such as improving dietary quality in people with adiposity or promoting weight control in those with unhealthy eating habits, may provide an effective strategy to reduce CRC risk.

2.
Environ Pollut ; 349: 123908, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38570157

RESUMO

Paddy Crusts (PC) play a pivotal role in the migration and transformation of heavy metals within paddy ecosystems, situated at the critical intersection of air, water, and soil. This study focused on PC samples from heavy metal-contaminated rice paddies in six southern Chinese provinces. It's the first time we've screened and quantified the impact of nutrition, physicochemical properties, and heavy metals on bacterial diversity in PC. Our results highlight the significant influence of zinc, total nitrogen, and soil manganese on bacterial diversity. Using structural equation models, we identified the pathways through which these three types of environmental factors shape bacterial diversity. Heavy metal indicators and physical and chemical indicators exerted a direct negative effect on bacterial diversity in PC, while nutritional indicators had a direct and significant positive effect on bacterial diversity. Variance partitioning analysis revealed heavy metals had the most significant impact, accounting for 7.77% of the total effect. Moreover, the influence of heavy metals on bacterial diversity increased as diversity decreased, ranging from 3.81% to 42.09%. To remediate specific heavy metal pollution, our proposed method involves cultivating indigenous bacteria by controlling these environmental factors, based on an analysis of the interplay among bacterial diversity, environmental variables, and heavy metal bioconcentration factors. These findings enhance our understanding of PC and provide insights into rice field heavy metal pollution mitigation.


Assuntos
Metais Pesados , Oryza , Microbiologia do Solo , Poluentes do Solo , Metais Pesados/análise , China , Poluentes do Solo/análise , Bactérias/efeitos dos fármacos , Monitoramento Ambiental/métodos , Ecossistema , Solo/química , Agricultura
3.
J Hazard Mater ; 465: 133524, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232555

RESUMO

Utilizing an acid-resistant biological soil crust (BSC) species that we discovered, we developed a device capable of efficiently removing cadmium (Cd) from mine wastewater with varying levels of acidity. Our research has demonstrated that this particular BSC species adapts to acidic environments by regulating the balance of fatty acids and acid-resistant enzymes. At a Cd concentration of 5 mg/L, the BSC grew well. When the initial Cd concentration was 2 mg/L, and the flow rate was set at 1 mL/min (at pH levels of 3, 4, and 5), BSC had a high removal rate of Cd, and the removal rate increased with the increase of pH (from 90% to 97%). Chemisorption is the primary removal mechanism in the initial stage, where the functional groups and minerals on the surface of the BSC play a significant role. In addition, BSC also adapts to Cd stress by changing bacterial community structure. It was discovered through infrared spectroscopy and two-dimensional correlation analysis that hydrophilic groups, specifically phosphate and carboxyl groups, exhibited the highest reactivity during the Cd binding process. Protein secondary structure analysis confirmed that as the pH increased, the adsorption capacity of the BSC increased; making biofilm formation easier. This study presents a novel approach for the treatment of acidic wastewater.


Assuntos
Cádmio , Águas Residuárias , Cádmio/análise , Solo/química , Minerais , Adsorção , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA