Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202404574, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38638104

RESUMO

The electrocatalytic CO2 reduction reaction (CO2RR) is a sustainable route for converting CO2 into value-added fuels and feedstocks, advancing a carbon-neutral economy. The electrolyte critically influences CO2 utilization, reaction rate and product selectivity. While typically conducted in neutral/alkaline aqueous electrolytes, the CO2RR faces challenges due to (bi)carbonate formation and its crossover to the anolyte, reducing efficiency and stability. Acidic media offer promise by suppressing these processes, but the low Faradaic efficiency, especially for multicarbon (C2+) products, and poor electrocatalyst stability persist. The effective regulation of the reaction environment at the cathode is essential to favor the CO2RR over the competitive hydrogen evolution reaction (HER) and improve long-term stability. This review examines progress in the acidic CO2RR, focusing on reaction environment regulation strategies such as electrocatalyst design, electrode modification and electrolyte engineering to promote the CO2RR. Insights into the reaction mechanisms via in situ/operando techniques and theoretical calculations are discussed, along with critical challenges and future directions in acidic CO2RR technology, offering guidance for developing practical systems for the carbon-neutral community.

2.
Adv Sci (Weinh) ; 10(36): e2304096, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37705125

RESUMO

Integrating nanomaterials into the polymer matrix is an effective strategy to optimize the performance of polymer-based piezoelectric devices. Nevertheless, the trade-off between the output enhancement and stability maintenance of piezoelectric composites usually leads to an unsatisfied overall performance for the high-strength operation of devices. Here, by setting liquid metal (LM) nanodroplets as the nanofillers in a poly(vinylidene difluoride) (PVDF) matrix, the as-formed liquid-solid/conductive-dielectric interfaces significantly promote the piezoelectric output and the reliability of this piezoelectric composite. A giant performance improvement featured is obtained with, nearly 1000% boosting on the output voltage (as high as 212 V), 270% increment on the piezoelectric coefficient (d33 ∼51.1 pC N-1 ) and long-term reliability on both structure and output (over 36 000 cycles). The design of a novel heterogenous interface with both mechanical matching and electric coupling can be the new orientation for developing high performance piezoelectric composite-based devices.

3.
Acta Biomater ; 168: 185-197, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451657

RESUMO

Osteodentin is a dominant mineralized collagenous tissue in the teeth of many fishes, with structural and histological characteristics resembling those of bone. Osteodentin, like bone, comprises osteons as basic structural building blocks, however, it lacks the osteocytes and the lacuno-canalicular network (LCN), which are known to play critical roles in controlling the mineralization of the collagenous matrix in bone. Although numerous vascular canals exist in osteodentin, their role in tooth maturation and the matrix mineralization process remain poorly understood. Here, high resolution micro-computed tomography (micro-CT) and focused ion beam-scanning electron microscopy (FIB-SEM) were used to obtain 3D structural information of osteodentin in shark teeth at multiple scales. We observed a complex 3D network of primary canals with a diameter ranging from ∼10 µm to ∼120 µm, where the canals are surrounded by osteon-like concentric layers of lamellae, with 'interosteonal' tissue intervening between neighboring osteons. In addition, numerous hierarchically branched secondary canals extended radially from the primary canals into the interosteonal tissue, decreasing in diameter from ∼10 µm to hundreds of nanometers. Interestingly, the mineralization degree increases from the periphery of primary canals into the interosteonal tissue, suggesting that mineralization begins in the interosteonal tissue. Correspondingly, the hardness and elastic modulus of the interosteonal tissue are higher than those of the osteonal tissue. These results demonstrate that the 3D hierarchical canal network is positioned to play a critical role in controlling the gradient mineralization of osteodentin, also providing valuable insight into the formation of mineralized collagenous tissue without osteocytes and LCN. STATEMENT OF SIGNIFICANCE: Bone is a composite material with versatile mechanical properties. Osteocytes and their lacuno-canalicular network (LCN) are known to play critical roles during formation of human bone. However, the bone and osteodentin of many fishes, although lacking osteocytes and LCN, exhibit similar osteon-like structure and mechanical functions. Here, using various high resolution 3D characterization techniques, we reveal that the 3D network of primary canals and numerous hierarchically branched secondary canals correlate with the mineralization gradient and micromechanical properties of osteonal and interosteonal tissues of shark tooth osteodentin. This work significantly improves our understanding of the construction of bone-like mineralized tissue without osteocytes and LCN, and provides inspirations for the fabrication of functional materials with hierarchical structure.


Assuntos
Osso e Ossos , Tubarões , Humanos , Animais , Microtomografia por Raio-X , Osteócitos/patologia , Ósteon
4.
Materials (Basel) ; 16(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37109994

RESUMO

This study investigates the impact of Sr doping on the tribocatalytic performance of BaTiO3 in degrading organic pollutants. Ba1-xSrxTiO3 (x = 0-0.3) nanopowders are synthesized and their tribocatalytic performance evaluated. By doping Sr into BaTiO3, the tribocatalytic performance was enhanced, resulting in an approximately 35% improvement in the degradation efficiency of Rhodamine B using Ba0.8Sr0.2TiO3. Factors such as the friction contact area, stirring speed, and materials of the friction pairs also influenced the dye degradation. Electrochemical impedance spectroscopy revealed that Sr doping improved BaTiO3's charge transfer efficiency, thereby boosting its tribocatalytic performance. These findings indicate potential applications for Ba1-xSrxTiO3 in dye degradation processes.

5.
ACS Appl Mater Interfaces ; 14(22): 25937-25948, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35618679

RESUMO

The research and development of low-power-consumption and room-temperature hydrogen sensors are of great significance for the safe application of hydrogen energy. Herein, orthorhombic Nb2O5-x nanobelts are prepared through a combined procedure of hydrothermal, ion exchange, and annealing treatment in Ar. The topological transformation process results in the formation of abundant surface defects including chemical defects such as Nb4+, oxygen vacancies, and disordered microregions, which lead to the abnormal p-type conducting and hydrogen sensing behavior. Moreover, the orthorhombic Nb2O5-x nanobelts exhibit fast and sensitive room-temperature hydrogen sensing performance, which shows greater advancement than the monoclinic, tetragonal, and hexagonal Nb2O5 one-dimensional (1D) nanostructures. The response time and lowest limit of detection of the as-fabricated room-temperature sensor decrease to 28 s and 3.5 ppm, respectively. The sensor also exhibits a highly selective hydrogen response against CO, CH4, ethanol, H2S, and NH3. The hydrogen response of the Nb2O5-x nanobelts can be attributed to the redox reaction between hydrogen and preadsorbed oxygens. The defective surface structure and the prolonged dimension of the nanobelts give rise to the highly reactive surface and the suppression of the negative nanojunction effect, which greatly improves the sensing performance. The orthorhombic lattice structure can also promote gas adsorption and diffusion behavior due to its specific catalytic and pathway effect. The results of this work can be helpful for the rational design and defect engineering of the Nb2O5-based 1D nanostructures for room-temperature hydrogen sensing applications.

6.
Materials (Basel) ; 15(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35207909

RESUMO

A high long-term stability is crucial for room-temperature gas-sensitive metal oxide semiconductors (MOSs) to find practical applications. A series of Pd-SnO2 mixtures with 2, 5, and 10 wt% Pd separately were prepared from SnO2 and Pd powders. Through pressing and sintering, Pd-SnO2 composite nanoceramics have been successfully prepared from the mixtures, which show responses of 50, 100, and 60 to 0.04% CO-20% O2-N2 at room temperature for samples of 2, 5, and 10 wt% Pd, respectively. The room-temperature CO-sensing characteristics were degraded obviously after dozens of days' aging for all samples. For samples of 5 wt% Pd, the response to CO was decreased by a factor of 4 after 20 days of aging. Fortunately, some rather mild heat treatments will quite effectively reactivate those aged samples. Heat treatment at 150 °C for 15 min in air tripled the response to CO for a 20 days-aged sample of 5 wt% Pd. It is proposed that the deposition of impurity gases in air on Pd in Pd-SnO2 composite nanoceramics has resulted in the observed aging, while their desorption from Pd through mild heat treatments leads to the reactivation. More studies on aging and reactivation of room-temperature gas sensitive MOSs should be conducted to achieve high long-term stability for room-temperature MOS gas sensors.

7.
Small ; 17(39): e2103301, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34473395

RESUMO

The nucleation and growth of bubbles within a solid matrix is a ubiquitous phenomenon that affects many natural and synthetic processes. However, such a bubbling process is almost "invisible" to common characterization methods because it has an intrinsically multiphased nature and occurs on very short time/length scales. Using in situ transmission electron microscopy to explore the decomposition of a solid precursor that emits gaseous byproducts, the direct observation of a complete nanoscale bubbling process confined in ultrathin 2D flakes is presented here. This result suggests a three-step pathway for bubble formation in the confined environment: void formation via spinodal decomposition, bubble nucleation from the spherization of voids, and bubble growth by coalescence. Furthermore, the systematic kinetics analysis based on COMSOL simulations shows that bubble growth is actually achieved by developing metastable or unstable necks between neighboring bubbles before coalescing into one. This thorough understanding of the bubbling mechanism in a confined geometry has implications for refining modern nucleation theories and controlling bubble-related processes in the fabrication of advanced materials (i.e., topological porous materials).

8.
Nanotechnology ; 32(42)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34237710

RESUMO

Polymer-based dielectric capacitors play a notable part in the practical application of energy storage devices. Graphene oxide (GO) nanosheets can improve the dielectric properties of polymer-based composites. However, the breakdown strength will greatly reduce with the increase of GO content. Hence, the construction of sandwich structure can enhance the breakdown strength without reducing the dielectric constant. Herein, single-layered and sandwich-structured poly(vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-CTFE)) nanocomposites with low content of GO nanosheets (<1.0 wt%) are prepared via employing a straightforward casting method. Compared with the single-layered composites and pure P(VDF-CTFE), the sandwich-structured composites exhibit comprehensively better performance compared. The sandwich-structured composite with 0.4 wt% GO nanosheets show an excellent dielectric constant of 13.6 (at 1 kHz) and an outstanding discharged energy density of 8.25 J cm-3at 3400 kV cm-1. These results demonstrate that the growth of the dielectric properties is owing to 2D GO nanosheets and the enhancement of breakdown strength due to the sandwich structure. The results from finite element simulation provide theoretical support for the design of high energy density composites.

9.
Materials (Basel) ; 14(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922127

RESUMO

Many low-dimensional nanostructured metal oxides (MOXs) with impressive room-temperature gas-sensing characteristics have been synthesized, yet transforming them into relatively robust bulk materials has been quite neglected. Pt-decorated SnO2 nanoparticles with 0.25-2.5 wt% Pt were prepared, and highly attractive room-temperature hydrogen-sensing characteristics were observed for them all through pressing them into pellets. Some pressed pellets were further sintered over a wide temperature range of 600-1200 °C. Though the room-temperature hydrogen-sensing characteristics were greatly degraded in many samples after sintering, those samples with 0.25 wt% Pt and sintered at 800 °C exhibited impressive room-temperature hydrogen-sensing characteristics comparable to those of their counterparts of as-pressed pellets. The variation of room-temperature hydrogen-sensing characteristics among the samples was explained by the facts that the connectivity between SnO2 grains increases with increasing sintering temperature, and Pt promotes oxidation of SnO2 at high temperatures. These results clearly demonstrate that some low-dimensional MOX nanocrystals can be successfully transformed into bulk MOXs with improved robustness and comparable room-temperature gas-sensing characteristics.

10.
Nanomaterials (Basel) ; 11(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671311

RESUMO

Impressive room-temperature gas-sensing capabilities have been reported for nanomaterials of many metal oxides, including SnO2, ZnO, TiO2, WO3, and Fe2O3, while little attention has been paid to the intrinsic difference among them. Pt-SnO2 and Pt-ZnO composite nanoceramics have been prepared through convenient pressing and sintering. The former shows strong and stable responses to hydrogen in 20% O2-N2 (synthetic air) at room temperature, while the responses to hydrogen in N2 cannot be stabilized in limited times; the latter shows strong and stable responses to hydrogen in N2, while the responses to hydrogen in synthetic air are greatly depressed. Further analyses reveal that for Pt-ZnO, the responses result from the reaction between hydrogen and oxygen chemisorbed on ZnO; while for Pt-SnO2, the responses result from two reactions of hydrogen, one is that with oxygen chemisorbed on SnO2 and the other is hydrogen chemisorption on SnO2. These results reveal two different room-temperature hydrogen-sensing mechanisms among MOXs, which results in highly contrasting room-temperature hydrogen-sensing capabilities attractive for sensing hydrogen in oxygen-contained and oxygen-free environments, separately.

11.
Chemistry ; 27(19): 5992-5998, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33462895

RESUMO

BaZnSi3 O8 ceramic was prepared by the conventional solid-state method and sintered at 1100 °C. XRD and synchrotron Rietveld refinement analyses revealed the BaZnSi3 O8 ceramic presented a monoclinic structure with a space group of P21 /a (No.14), which is reported for the first time. The BaZnSi3 O8 ceramic presented a weak ferroelectricity, which was confirmed by the P-E loop and the 90° nanoscale ferroelectric domain. Although ϵr -T displayed two ϵr abnormal peaks at 400 °C and 460 °C, the Curie temperature (Tc ) was located at 460 °C according to the dielectric loss and Curie-Weiss law. Moreover, the BaZnSi3 O8 ceramic exhibited optimized microwave dielectric properties with ϵr =6.55, Q×f=52400 GHz, and τf =-24.5 ppm/°C. Hence, the BaZnSi3 O8 ceramic in the ternary BaO-ZnO-SiO2 system possessed both weak ferroelectricity and microwave dielectric properties. These results are expected to break the technical barrier of ferroelectric phase shifter applications in microwave and even millimeter-wave frequency bands.

12.
Front Chem ; 8: 602322, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330396

RESUMO

The all-solid-state flexible supercapacitor (AFSC), one of the most flourishing energy storage devices for portable and wearable electronics, attracts substantial attentions due to their high flexibility, compact size, improved safety, and environmental friendliness. Nevertheless, the current AFSCs usually show low energy density, which extremely hinders their practical applications. Herein, ultra-thin ß-Ni(OH)2 nanoplates with thickness of 2.4 ± 0.2 nm are in-situ grown uniformly on Ni foam by one step hydrothermal treatment. Thanks to the ultra-thin nanostructure, ß-Ni(OH)2 nanoplates shows a specific capacitance of 1,452 F g-1 at the scan rate of 3 mV s-1. In addition, the assembled asymmetric AFSC [Ni(OH)2//Activated carbon] shows a specific capacitance of 198 F g-1. It is worth noting that the energy density of the AFSC can reach 62 Wh kg-1 while keeping a high power density of 1.5 kW kg-1. Furthermore, the fabricated AFSCs exhibit satisfied fatigue behavior and excellent flexibility, and about 82 and 86% of the capacities were retained after 5,000 cycles and folding over 1,500 times, respectively. Two AFSC in series connection can drive the electronic watch and to run stably for 10 min under the bending conditions, showing a great potential for powering portable and wearable electronic devices.

13.
Opt Express ; 28(15): 21903-21915, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752462

RESUMO

The polarization switching and phase generated carrier (PS-PGC) hybrid method is typically adopted to control signal fading induced by fiber birefringence and to precisely demodulate signals in interferometric fiber Bragg grating (FBG) sensor arrays. Unlike simple PGC demodulation, the real-time phase delay between the detected interference and the PGC carrier in the hybrid method has more adverse effects as both demodulation accuracy and background noise can be deteriorated, which may invalidate the polarization switching (PS) method. Aiming at this issue, the real-time phase delay and its compensation method were analyzed in detail in this paper. The features of the real-time phase delay in the PS-PGC hybrid method were summarized and the differences among polarization channels were investigated. Theoretical analysis indicated that the real-time phase delay mainly affected the interference complex synthesis (ICS) procedure, ultimately bringing about errors in the PS-PGC algorithm. The method for demodulating the real-time phase delay from sampled interference was presented, which provided the key compensation parameter. Experimental results showed that the compensation method could greatly improve the stability of the demodulated signal and suppress the sensor background phase noise. The amplitude of the demodulated signal was stabilized with a fluctuation less than ± 0.75dB and a noise suppression of 5dB. The acceptable compensation error was also analyzed.

14.
Opt Express ; 27(16): A1207-A1215, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510509

RESUMO

ZnO is a promising short-wavelength light-emitting materials for its wide bandgap (3.37 eV) and large exciton binding energy (∼60 meV), however, practical p-type doped ZnO is the main challenge in this field. Here, Blue light-emitting diodes (LEDs) based on the homogeneous junctions of Sb doped ZnO nanowire arrays grown on Ga doped ZnO single crystal substrate are fabricated. Element analysis, FET and Hall-effect measurements demonstrate that the Sb atom has been successfully doped into ZnO nanowires to from p-type conductivity. On the benefit of high quality of nano-size homojunction, the fabricated LED shows low turn-on voltage turn-on voltage as low as 3.4 V and strong blue emission peak located at 425 nm at room temperature, which originate from interfacial recombination of ZnO nanowire p-n homojunctions. The present blue LED based on ZnO material may have potential applications in short-wavelength optoelectronic devices.

15.
Chemosphere ; 228: 212-218, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31029967

RESUMO

In this work, it is found that the hydrothermally-synthesized bismuth oxychloride can behave both the piezocatalysis and photocatalysis for the Rhodamine B dye decomposition. ∼99% decomposition efficiency is achieved after both vibrating and lighting the Rhodamine B dye solution for ∼96 min with the addition of bismuth oxychloride catalyst, while the ∼72% and ∼26% decomposition efficiencies are obtained for only photocatalysis or only piezocatalysis respectively. In bi-catalysis, the mechanical strain produced due to vibration will directly provide an electric field that will increase the separation between the photo-induced electron-hole pairs, yielding to the enhanced decomposition performance of bi-catalysis. There is no significant change in the bi-catalytic performance of bismuth oxychloride nanomaterial observed after being recycled four times. Bismuth oxychloride catalyst is potential for the bi-catalytic decomposition treatment of wastewater through harvesting both the environmental vibration energy and light energy.


Assuntos
Bismuto/química , Recuperação e Remediação Ambiental/métodos , Rodaminas/química , Catálise , Ondas de Choque de Alta Energia , Luz , Nanoestruturas/química , Águas Residuárias/química
16.
J Nanosci Nanotechnol ; 19(8): 5317-5322, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913850

RESUMO

As an important research topic of surface enhanced Raman scattering (SERS), periodic metal nanoarrays have attracted remarkable attention due to their superior properties, such as excellent enhancing ability, and high structural homogeneity and stability. In this work, periodic Au nanostructures with variable repetitive unit size, Au nanoparticle size, and gap sizes are fabricated by electron beam lithography on SiO2/Si substrates to investigate the influence of these structural parameters on SERS performances. The SERS intensity is found to increase linearly with decreasing repetitive unit size (increase of Au nanoparticle number density), while shows no obvious dependence on the Au nanoparticle size. A SERS enhancement factor of 6.6 × 105 is obtained for Au arrays with a repetitive unit size of 200 nm. The gap size does not affect the SERS intensity when it is over 75 nm, and exhibits an obvious enhancement effect when it is below 25 nm. A linear quantitative relationship between the Raman intensity and analyte concentrations of R6G, as well as a limit of detection of 10-11 mol/L was achieved for an Au nanoparticle array with gap size of 25 nm.

17.
Sensors (Basel) ; 18(7)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29958452

RESUMO

Ultraviolet (UV) detectors have attracted considerable attention in the past decade due to their extensive applications in the civil and military fields. Wide bandgap semiconductor-based UV detectors can detect UV light effectively, and nanowire structures can greatly improve the sensitivity of sensors with many quantum effects. This review summarizes recent developments in the classification and principles of UV detectors, i.e., photoconductive type, Schottky barrier type, metal-semiconductor-metal (MSM) type, p-n junction type and p-i-n junction type. The current state of the art in wide bandgap semiconductor materials suitable for producing nanowires for use in UV detectors, i.e., metallic oxide, III-nitride and SiC, during the last five years is also summarized. Finally, novel types of UV detectors such as hybrid nanostructure detectors, self-powered detectors and flexible detectors are introduced.

18.
Nanotechnology ; 29(21): 215301, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29513270

RESUMO

The design of various nanostructures with specific compositions and shapes is highly demanded due to the widespread use of micro/nano electro-mechanical systems. In this work, one-dimensional CuO-Pt core-shell nanowires (NWs) are acquired by depositing Pt nanoparticles onto CuO NWs and then mechanically-shaped into nanohooks. Subsequently, the hook-like shape is maintained by the Pt-shell which is reconstructed via Joule heat and re-solidified after cooling down, during which the elastic strain energy is stored in the CuO-core. The results provide a simple strategy to design nanostructures with various compositions and shapes, implying the potential applications in mechanical energy storage and shape memory nanodevices.

19.
Sensors (Basel) ; 18(4)2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29570604

RESUMO

In this work, SnO2 nanoflowers synthesized by a hydrothermal method were employed as hydrogen sensing materials. The as-synthesized SnO2 nanoflowers consisted of cuboid-like SnO2 nanorods with tetragonal structures. A great increase in the relative content of surface-adsorbed oxygen was observed after the vacuum annealing treatment, and this increase could have been due to the increase in surface oxygen vacancies serving as preferential adsorption sites for oxygen species. Annealing treatment resulted in an 8% increase in the specific surface area of the samples. Moreover, the conductivity of the sensors decreased after the annealing treatment, which should be attributed to the increase in electron scattering around the defects and the compensated donor behavior of the oxygen vacancies due to the surface oxygen adsorption. The hydrogen sensors of the annealed samples, compared to those of the unannealed samples, exhibited a much higher sensitivity and faster response rate. The sensor response factor and response rate increased from 27.1% to 80.2% and 0.34%/s to 1.15%/s, respectively. This remarkable enhancement in sensing performance induced by the annealing treatment could be attributed to the larger specific surface areas and higher amount of surface-adsorbed oxygen, which provides a greater reaction space for hydrogen. Moreover, the sensors with annealed SnO2 nanoflowers also exhibited high selectivity towards hydrogen against CH4, CO, and ethanol.

20.
RSC Adv ; 8(14): 7422-7427, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35539103

RESUMO

Recent developments of self-powered devices and systems have attracted much attention. Lead zirconate titanate (PZT) has been regarded as one of the most promising materials for building high-performance nanogenerators. Herein, vertically aligned PZT nanorod arrays were synthesized on a pre-oxidized Ti substrate in the presence of a surfactant by a one-step hydrothermal method. The PZT nanorod arrays consist of an initial layer of a PZT film and well aligned nanorods with (001)-orientated tetragonal single crystalline structures. The PZT nanorods exhibited a high piezoelectric response with a d 33 value of up to 1600 pm V-1. A piezoelectric energy harvester was fabricated based on the PZT nanorod arrays, which exhibited outstanding energy harvesting performance with an open-circuit output voltage of 3.3 V and 8 V when the devices were pressed by a compressive 10 N force and a finger tapping motion, respectively. Moreover, the average power density generated by those two mechanical stimulations were up to 3.16 and 5.92 µW cm-2 with the external load of 1 MΩ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...