Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Exp Med ; 24(1): 94, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703294

RESUMO

Prior research has established associations between immune cells, inflammatory proteins, and chronic kidney disease (CKD). Our Mendelian randomization study aims to elucidate the genetic causal relationships among these factors and CKD. We applied Mendelian randomization using genetic variants associated with CKD from a large genome-wide association study (GWAS) and inflammatory markers from a comprehensive GWAS summary. The causal links between exposures (immune cell subtypes and inflammatory proteins) and CKD were primarily analyzed using the inverse variance-weighted, supplemented by sensitivity analyses, including MR-Egger, weighted median, weighted mode, and MR-PRESSO. Our analysis identified both absolute and relative counts of CD28 + CD45RA + CD8 + T cell (OR = 1.01; 95% CI = 1.01-1.02; p < 0.001, FDR = 0.018) (OR = 1.01; 95% CI = 1.00-1.01; p < 0.001, FDR = 0.002), CD28 on CD39 + CD8 + T cell(OR = 0.97; 95% CI = 0.96-0.99; p < 0.001, FDR = 0.006), CD16 on CD14-CD16 + monocyte (OR = 1.02; 95% CI = 1.01-1.03; p < 0.001, FDR = 0.004) and cytokines, such as IL-17A(OR = 1.11, 95% CI = 1.06-1.16, p < 0.001, FDR = 0.001), and LIF-R(OR = 1.06, 95% CI = 1.02-1.10, p = 0.005, FDR = 0.043) that are genetically predisposed to influence the risk of CKD. Moreover, the study discovered that CKD itself may causatively lead to alterations in certain proteins, including CST5(OR = 1.16, 95% CI = 1.09-1.24, p < 0.001, FDR = 0.001). No evidence of reverse causality was found for any single biomarker and CKD. This comprehensive MR investigation supports a genetic causal nexus between certain immune cell subtypes, inflammatory proteins, and CKD. These findings enhance the understanding of CKD's immunological underpinnings and open avenues for targeted treatments.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/imunologia , Mediadores da Inflamação/metabolismo , Predisposição Genética para Doença
2.
Front Pharmacol ; 15: 1327149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444939

RESUMO

Background: Hepatitis B virus associated-glomerulonephritis (HBV-GN) is one of the major secondary renal diseases in China, and microRNAs (miRNAs) in bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exo) can attenuate HBV-X protein (HBx)-induced ferroptosis in renal podocytes, but the exact mechanism remains unclear. This study aimed to investigate the protective mechanism of miR-223-3p in BMSC-Exo in HBx-induced ferroptosis in podocytes. Methods: The study employed human renal podocyte cells (HPCs), bone marrow-derived mesenchymal stem cells (BMSCs), as well as kidney tissue from C57BL/6 mice and HBx transgenic mice. Initially, the correlation between STAT3 phosphorylation and ferroptosis was authenticated through the administration of signal transducer and activator of transcription 3 (STAT3) phosphorylation inhibitors in both in vivo and in vitro settings. Furthermore, the effect of HDAC2 overexpression on STAT3 phosphorylation was examined. Subsequently, the association between BMSC-Exo carrying miR-223-3p, HDAC2, and the phosphorylation of STAT3 in HPCs ferroptosis and injury induced by HBx was assessed. The interaction between miR-223-3p and HDAC2 was confirmed via RNA immunoprecipitation assay. Various techniques such as cell counting kit-8 assay, western blot, RT-qPCR, immunofluorescence, flow cytometry, lipid peroxidation assay kit, iron assay kit, transmission electron microscopy, and hematoxylin-eosin staining were employed to visualize the extent of HBx-induced podocyte injury and ferroptosis in both in vivo and in vitro. Results: The attenuation of podocyte ferroptosis can be achieved by inhibiting the phosphorylation of STAT3 in podocytes induced by HBx. Conversely, the upregulation of HDAC2 can enhance STAT3 phosphorylation, thereby promoting podocyte ferroptosis. MiR-223-3p was capable of directly exerting negative regulation on HDAC2 expression. BMSC-Exo carrying miR-223-3p can effectively suppress the expression of HDAC2, ultimately leading to reduce HBx-induced ferroptosis in podocytes by targeting HDAC2 with miR-223-3p and downregulating STAT3 phosphorylation. Conclusion: This study evidences the potential of BMSC-Exo mediated delivery of miR-223-3p in mitigating HBx-induced ferroptosis in podocytes, thereby offering a novel therapeutic target and approach for treating HBV-GN and alleviating renal injury.

3.
PLoS One ; 19(2): e0298729, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38354117

RESUMO

BACKGROUND: Chronic Kidney Disease (CKD) represents a global health challenge, with its etiology and underlying mechanisms yet to be fully elucidated. Integrating genomics with metabolomics can offer insights into the putatively causal relationships between serum metabolites and CKD. METHODS: Utilizing bidirectional Mendelian Randomization (MR), we assessed the putatively causal associations between 486 serum metabolites and CKD. Genetic data for these metabolites were sourced from comprehensive genome-wide association studies, and CKD data were obtained from the CKDGen Consortium. RESULTS: Our analysis identified four metabolites with a robust association with CKD risk, of which mannose and glycine showed the most reliable causal relationships. Pathway analysis spotlighted five significant metabolic pathways, notably including "Methionine Metabolism" and "Arginine and Proline Metabolism", as key contributors to CKD pathogenesis. CONCLUSION: This study underscores the potential of certain serum metabolites as biomarkers for CKD and illuminates pivotal metabolic pathways in CKD's pathogenesis. Our findings lay the groundwork for potential therapeutic interventions and warrant further research for validation.


Assuntos
Fabaceae , Insuficiência Renal Crônica , Glicina , Manose , Estudo de Associação Genômica Ampla , Insuficiência Renal Crônica/genética , Análise da Randomização Mendeliana
4.
Int J Med Sci ; 21(2): 277-283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169716

RESUMO

Objective: This study aimed to investigate the association between serum potassium variability and 60-day mortality and cardiovascular disease (CVD) in maintenance hemodialysis (MHD) patients following the coronavirus disease 2019 (COVID-19) infection. Methods: We conducted a retrospective study on MHD patients treated at the affiliated hospital of Qingdao University hemodialysis center who were infected with the novel coronavirus between December 1, 2022, and January 31, 2023. Baseline characteristics of patients were collected from electronic medical records. Kaplan-Meier survival analysis was used to obtain patient survival probabilities, and multivariate Cox hazard regression models and binary Logistic regression models were used to obtain hazard ratios (HR), odds ratios (OR), and 95% confidence intervals (95% CI) between exposure and outcomes. Results: A total of 296 patients were included in this study, with a mean age of 57.2±16.3 years, and 59.8% were male. The 60-day mortality rate was 10.8%, and the incidence of CVD was 32.8%. Kaplan-Meier curves showed that a higher potassium variability coefficient was associated with higher all-cause mortality (P = 0.024). After adjusting for potential confounders, multivariate Cox regression analysis showed that the HR for 60-day mortality in the Q4 group compared to the Q1 group was 2.06 (95% CI = 1.03-4.09, P = 0.040), and binary Logistic regression analysis showed that the OR for 60-day CVD in the Q4 group compared to the Q1 group was 4.09 (95% CI = 1.52-10.97, P = 0.005). Conclusion: Increased serum potassium variability in MHD patients after COVID-19 infection significantly increased the likelihood of 60-day mortality and CVD.


Assuntos
COVID-19 , Doenças Cardiovasculares , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Feminino , Estudos Retrospectivos , COVID-19/complicações , Diálise Renal/efeitos adversos , Potássio
5.
Materials (Basel) ; 16(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37687714

RESUMO

Viscoelasticity of the soft tissue is an important mechanical factor for disease diagnosis, biomaterials testing and fabrication. Here, we present a real-time and high-resolution viscoelastic response-optical coherence elastography (VisR-OCE) method based on acoustic radiation force (ARF) excitation and optical coherence tomography (OCT) imaging. The relationship between displacements induced by two sequential ARF loading-unloading and the relaxation time constant of the soft tissue-is established for the Kelvin-Voigt material. Through numerical simulation, the optimal experimental parameters are determined, and the influences of material parameters are evaluated. Virtual experimental results show that there is less than 4% fluctuation in the relaxation time constant values obtained when various Young's modulus and Poisson's ratios were given for simulation. The accuracy of the VisR-OCE method was validated by comparing with the tensile test. The relaxation time constant of phantoms measured by VisR-OCE differs from the tensile test result by about 3%. The proposed VisR-OCE method may provide an effective tool for quick and nondestructive viscosity testing of biological tissues.

6.
PeerJ ; 11: e15437, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250717

RESUMO

Background: Diabetic nephropathy (DN), the most intractable complication in diabetes patients, can lead to proteinuria and progressive reduction of glomerular filtration rate (GFR), which seriously affects the quality of life of patients and is associated with high mortality. However, the lack of accurate key candidate genes makes diagnosis of DN very difficult. This study aimed to identify new potential candidate genes for DN using bioinformatics, and elucidated the mechanism of DN at the cellular transcriptional level. Methods: The microarray dataset GSE30529 was downloaded from the Gene Expression Omnibus Database (GEO), and the differentially expressed genes (DEGs) were screened by R software. We used Gene Ontology (GO), gene set enrichment analysis (GSEA), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to identify the signal pathways and genes. Protein-protein interaction (PPI) networks were constructed using the STRING database. The GSE30122 dataset was selected as the validation set. Receiver operating characteristic (ROC) curves were applied to evaluate the predictive value of genes. An area under curve (AUC) greater than 0.85 was considered to be of high diagnostic value. Several online databases were used to predict miRNAs and transcription factors (TFs) capable of binding hub genes. Cytoscape was used for constructing a miRNA-mRNA-TF network. The online database 'nephroseq' predicted the correlation between genes and kidney function. The serum level of creatinine, BUN, and albumin, and the urinary protein/creatinine ratio of the DN rat model were detected. The expression of hub genes was further verified through qPCR. Data were analyzed statistically using Student's t-test by the 'ggpubr' package. Results: A total of 463 DEGs were identified from GSE30529. According to enrichment analysis, DEGs were mainly enriched in the immune response, coagulation cascades, and cytokine signaling pathways. Twenty hub genes with the highest connectivity and several gene cluster modules were ensured using Cytoscape. Five high diagnostic hub genes were selected and verified by GSE30122. The MiRNA-mRNA-TF network suggested a potential RNA regulatory relationship. Hub gene expression was positively correlated with kidney injury. The level of serum creatinine and BUN in the DN group was higher than in the control group (unpaired t test, t = 3.391, df = 4, p = 0.0275, r = 0.861). Meanwhile, the DN group had a higher urinary protein/creatinine ratio (unpaired t test, t = 17.23, df = 16, p < 0.001, r = 0.974). QPCR results showed that the potential candidate genes for DN diagnosis included C1QB, ITGAM, and ITGB2. Conclusions: We identified C1QB, ITGAM and ITGB2 as potential candidate genes for DN diagnosis and therapy and provided insight into the mechanisms of DN development at transcriptome level. We further completed the construction of miRNA-mRNA-TF network to propose potential RNA regulatory pathways adjusting disease progression in DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Animais , Ratos , Antígenos CD18 , Biologia Computacional , Creatinina , Nefropatias Diabéticas/diagnóstico , MicroRNAs/genética , Qualidade de Vida , Humanos
7.
PeerJ ; 11: e15314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37193022

RESUMO

Introduction: Hepatitis B virus-associated glomerulonephritis (HBV-GN) is a common secondary kidney disease in China, the pathogenesis of which is not completely clear, and there is still a lack of effective treatment. Methods: The mechanism of exosomes derived from bone marrow mesenchymal stem cells (BMSCs) was investigated by using HBx-transfected human renal podocytes. Cell viability was detected by CCK8 assay. Iron and malondialdehyde (MDA) contents were detected by using commercial kits. Reactive oxygen species (ROS) levels were measured by flow cytometry analysis. The expression of ferroptosis related molecules was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. The effect of miR-223-3p transferred by BMSC-derived exosomes on HBx-overexpressing podocytes was proved by using miR-223-3p inhibitor. Results: The cell viability of podocytes reduced at 72 h or 96 h after the transfection of lentivirus overexpressing HBx protein (p < 0.05). Ferroptosis-related proteins, including glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) were down-regulated upon HBx overexpression, while acyl-CoA synthetase long-chain family member 4 (ACSL4) was up-regulated (p < 0.05). Intracellular levels of iron, MDA, and ROS were also enhanced (p < 0.05). BMSC-derived exosomes protected against ferroptosis induced by HBx overexpression in podocytes. miR-223-3p was enriched in BMSC-derived exosomes. Application of miR-223-3p inhibitor reversed the protective effect of BMSC-derived exosomes on HBx-induced ferroptosis in podocytes. Conclusion: BMSC-derived exosomes inhibit HBx-induced podocyte ferroptosis by transferring miR-223-3p.


Assuntos
Exossomos , Ferroptose , Células-Tronco Mesenquimais , MicroRNAs , Podócitos , Humanos , MicroRNAs/genética , Podócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo
8.
Nanoscale Res Lett ; 6(1): 463, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21777417

RESUMO

Catalyst-free, vertical array of InAs nanowires (NWs) are grown on Si (111) substrate using MOCVD technique. The as-grown InAs NWs show a zinc-blende crystal structure along a < 111 > direction. It is found that both the density and length of InAs NWs decrease with increasing growth temperatures, while the diameter increases with increasing growth temperature, suggesting that the catalyst-free growth of InAs NWs is governed by the nucleation kinetics. The longitudinal optical and transverse optical (TO) mode of InAs NWs present a phonon frequency slightly lower than those of InAs bulk materials, which are speculated to be caused by the defects in the NWs. A surface optical mode is also observed for the InAs NWs, which shifts to lower wave-numbers when the diameter of NWs is decreased, in agreement with the theory prediction. The carrier concentration is extracted to be 2.25 × 1017 cm-3 from the Raman line shape analysis. A splitting of TO modes is also observed.PACS: 62.23.Hj; 81.07.Gf; 63.22.Gh; 61.46.Km.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...