Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(9): e18296, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38702954

RESUMO

We investigated subarachnoid haemorrhage (SAH) macrophage subpopulations and identified relevant key genes for improving diagnostic and therapeutic strategies. SAH rat models were established, and brain tissue samples underwent single-cell transcriptome sequencing and bulk RNA-seq. Using single-cell data, distinct macrophage subpopulations, including a unique SAH subset, were identified. The hdWGCNA method revealed 160 key macrophage-related genes. Univariate analysis and lasso regression selected 10 genes for constructing a diagnostic model. Machine learning algorithms facilitated model development. Cellular infiltration was assessed using the MCPcounter algorithm, and a heatmap integrated cell abundance and gene expression. A 3 × 3 convolutional neural network created an additional diagnostic model, while molecular docking identified potential drugs. The diagnostic model based on the 10 selected genes achieved excellent performance, with an AUC of 1 in both training and validation datasets. The heatmap, combining cell abundance and gene expression, provided insights into SAH cellular composition. The convolutional neural network model exhibited a sensitivity and specificity of 1 in both datasets. Additionally, CD14, GPNMB, SPP1 and PRDX5 were specifically expressed in SAH-associated macrophages, highlighting its potential as a therapeutic target. Network pharmacology analysis identified some targeting drugs for SAH treatment. Our study characterised SAH macrophage subpopulations and identified key associated genes. We developed a robust diagnostic model and recognised CD14, GPNMB, SPP1 and PRDX5 as potential therapeutic targets. Further experiments and clinical investigations are needed to validate these findings and explore the clinical implications of targets in SAH treatment.


Assuntos
Biomarcadores , Aprendizado Profundo , Aprendizado de Máquina , Macrófagos , Análise de Célula Única , Hemorragia Subaracnóidea , Hemorragia Subaracnóidea/genética , Hemorragia Subaracnóidea/metabolismo , Animais , Macrófagos/metabolismo , Análise de Célula Única/métodos , Ratos , Biomarcadores/metabolismo , Masculino , Perfilação da Expressão Gênica , Transcriptoma , Ratos Sprague-Dawley , Modelos Animais de Doenças , Redes Neurais de Computação , Simulação de Acoplamento Molecular
2.
Arch Virol ; 168(2): 41, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609576

RESUMO

The presence of a novel functional prophage, IME1365_01, was predicted from bacterial high-throughput sequencing data and then successfully induced from Staphylococcus haemolyticus by mitomycin C treatment. Transmission electron microscopy showed that phage IME1365_01 has an icosahedral head (43 nm in diameter) and a long tail (172 nm long). This phage possesses a double-stranded DNA genome of 44,875 bp with a G+C content of 35.35%. A total of 63 putative open reading frames (ORFs) were identified in its genome. BLASTn analysis revealed that IME1365_01 is similar to Staphylococcus phage vB_SepS_E72, but with a genome homology coverage of only 26%. The phage genome does not have fixed termini. In ORF24 of phage IME1365_01, a conserved Toll-interleukin-1 receptor domain of the TIR_2 superfamily (accession no. c123749) is located at its N-terminus, and this might serve as a component of an anti-bacterial system. In conclusion, we developed a platform to obtain active temperate phage from prediction, identification, and induction from its bacterial host. After mass screening using this platform, numerous temperate phages and their innate anti-bacterial elements can provide extensive opportunities for therapy against bacterial (especially drug-resistant bacterial) infections.


Assuntos
Bacteriófagos , Siphoviridae , Staphylococcus haemolyticus/genética , DNA Viral/genética , Genoma Viral , Análise de Sequência de DNA , Siphoviridae/genética , Bacteriófagos/genética , Fagos de Staphylococcus/genética , Fases de Leitura Aberta
3.
J Virol ; 97(2): e0171922, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36688655

RESUMO

Coronavirus disease 2019 (COVID-19), which is caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the most severe emerging infectious disease in the current century. The discovery of SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins in South Asian countries indicates that SARS-CoV-2 likely originated from wildlife. To date, two SARSr-CoV-2 strains have been isolated from pangolins seized in Guangxi and Guangdong by the customs agency of China, respectively. However, it remains unclear whether these viruses cause disease in animal models and whether they pose a transmission risk to humans. In this study, we investigated the biological features of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin (Manis javanica) captured by the Guangxi customs agency, termed MpCoV-GX, in terms of receptor usage, cell tropism, and pathogenicity in wild-type BALB/c mice, human angiotensin-converting enzyme 2 (ACE2)-transgenic mice, and human ACE2 knock-in mice. We found that MpCoV-GX can utilize ACE2 from humans, pangolins, civets, bats, pigs, and mice for cell entry and infect cell lines derived from humans, monkeys, bats, minks, and pigs. The virus could infect three mouse models but showed limited pathogenicity, with mild peribronchial and perivascular inflammatory cell infiltration observed in lungs. Our results suggest that this SARSr-CoV-2 virus from pangolins has the potential for interspecies infection, but its pathogenicity is mild in mice. Future surveillance among these wildlife hosts of SARSr-CoV-2 is needed to monitor variants that may have higher pathogenicity and higher spillover risk. IMPORTANCE SARS-CoV-2, which likely spilled over from wildlife, is the third highly pathogenic human coronavirus. Being highly transmissible, it is perpetuating a pandemic and continuously posing a severe threat to global public health. Several SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins have been identified since the SARS-CoV-2 outbreak. It is therefore important to assess their potential of crossing species barriers for better understanding of their risk of future emergence. In this work, we investigated the biological features and pathogenicity of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin, named MpCoV-GX. We found that MpCoV-GX can utilize ACE2 from 7 species for cell entry and infect cell lines derived from a variety of mammalian species. MpCoV-GX can infect mice expressing human ACE2 without causing severe disease. These findings suggest the potential of cross-species transmission of MpCoV-GX, and highlight the need of further surveillance of SARSr-CoV-2 in pangolins and other potential animal hosts.


Assuntos
COVID-19 , Especificidade de Hospedeiro , Pangolins , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/genética , Linhagem Celular , China , COVID-19/transmissão , COVID-19/virologia , Pulmão/patologia , Pulmão/virologia , Camundongos Transgênicos , Pangolins/virologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Suínos , Quirópteros
4.
Zool Res ; 43(6): 977-988, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257829

RESUMO

Previous studies have identified multiple viruses in dead or severely diseased pangolins, but descriptions of the virome in healthy pangolins are lacking. This poses a greater risk of cross-species transmission due to poor preventive awareness and frequent interactions with breeders. In this study, we investigated the viral composition of 34 pangolins with no signs of disease at the time of sampling and characterized a large number of arthropod-associated viruses belonging to 11 families and vertebrate viruses belonging to eight families, including those with pathogenic potential in humans and animals. Several important vertebrate viruses were identified in the pangolins, including parvovirus, pestivirus, and picobirnavirus. The picobirnavirus was clustered with human and grey teal picobirnaviruses. Viruses with cross-species transmission ability were also identified, including circovirus, rotavirus, and astrovirus. Our study revealed that pangolins are frequently exposed to arthropod-associated viruses in the wild and can carry many vertebrate viruses under natural conditions. This study provides important insights into the virome of pangolins, underscoring the importance of monitoring potential pathogens in healthy pangolins to prevent outbreaks of infectious diseases in domesticated animals and humans.


Assuntos
Pangolins , Vírus , Humanos , Animais , Viroma , Animais Domésticos , Filogenia
5.
NAR Genom Bioinform ; 4(3): lqac057, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35937545

RESUMO

Temperate phages (active prophages induced from bacteria) help control pathogenicity, modulate community structure, and maintain gut homeostasis. Complete phage genome sequences are indispensable for understanding phage biology. Traditional plaque techniques are inapplicable to temperate phages due to their lysogenicity, curbing their identification and characterization. Existing bioinformatics tools for prophage prediction usually fail to detect accurate and complete temperate phage genomes. This study proposes a novel computational temperate phage detection method (TemPhD) mining both the integrated active prophages and their spontaneously induced forms (temperate phages) from next-generation sequencing raw data. Applying the method to the available dataset resulted in 192 326 complete temperate phage genomes with different host species, expanding the existing number of complete temperate phage genomes by more than 100-fold. The wet-lab experiments demonstrated that TemPhD can accurately determine the complete genome sequences of the temperate phages, with exact flanking sites, outperforming other state-of-the-art prophage prediction methods. Our analysis indicates that temperate phages are likely to function in the microbial evolution by (i) cross-infecting different bacterial host species; (ii) transferring antibiotic resistance and virulence genes and (iii) interacting with hosts through restriction-modification and CRISPR/anti-CRISPR systems. This work provides a comprehensively complete temperate phage genome database and relevant information, which can serve as a valuable resource for phage research.

6.
PLoS One ; 17(5): e0266683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507581

RESUMO

Foodborne diseases have become a serious havoc, where antimicrobial resistance is throwing significant challenges on daily basis. With the increase of drug-resistant bacteria and food-borne infection associated with Vibrio parahaemolyticus, new and effective strategies were needed to control the emergence of vibriosis. Lytic bacteriophages come up as a promising way to resist the pathogenic population in various applications. In this study, a V. parahaemolyticus specific phage vB_VpS_PG28 was isolated from sewage in the seafood market. Results showed vB_VpS_PG28, is strictly a lytic bacteriophage and has a relatively large burst size of 103 plaque-forming units per infected cell. Comparative genomic and bioinformatic analyses proved that vB_VpS_PG28 is a new bacteriophage that had a homologous relation with Vibrio phages of family Siphoviridae, especially with phage VH2_2019, but transmission electron microscopy of vB_VpS_PG28 morphology characterized its morphology is similar to that of Myoviridae family. In silico analysis indicated that the vB_VpS_PG28 genome consists of 82712 bp (48.08% GC content) encoding 114 putative ORFs without tRNA,and any gene associated with resistance or virulence factors has not been found. The bacteriophage in the present study has shown significant outcomes in order to control bacterial growth under in vitro conditions. Thus, we are suggesting a beneficiary agent against foodborne pathogens. Further, to ensure the safe usage of phage oral toxicity testing is recommended.


Assuntos
Bacteriófagos , Vibrio parahaemolyticus , Animais , Crustáceos/genética , Genoma Viral , Filogenia , Alimentos Marinhos , Análise de Sequência , Vibrio parahaemolyticus/genética
7.
Microbiol Resour Announc ; 11(2): e0117221, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35175128

RESUMO

We report the complete genome sequence of Aeromonas hydrophila bacteriophage BUCT552 whose full length of the linear dsDNA genome is 59,685 bp and G+C content is 60.0%. It contains 74 open reading frames but no tRNA. The results of TEM showed BUCT552 is a member of the family Siphoviridae.

8.
Front Cell Infect Microbiol ; 11: 680127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527599

RESUMO

Since the first reported case caused by the novel coronavirus SARS-CoV-2 infection in Wuhan, COVID-19 has caused serious deaths and an ongoing global pandemic, and it is still raging in more than 200 countries and regions around the world and many new variants have appeared in the process of continuous transmission. In the early stage of the epidemic prevention and control and clinical treatment, traditional Chinese medicine played a huge role in China. Here, we screened out six monomer compounds, including artemether, artesunate, arteannuin B, echinatin, licochalcone B and andrographolide, with excellent anti-SARS-CoV-2 and anti-GX_P2V activity from Anti-COVID-19 Traditional Chinese Medicine Compound Library containing 389 monomer compounds extracted from traditional Chinese medicine prescriptions "three formulas and three drugs". Our discovery preliminary proved the stage of action of those compounds against SARS-CoV-2 and provided inspiration for further research and clinical applications.


Assuntos
COVID-19 , SARS-CoV-2 , Artemeter , Artemisininas , Artesunato , Chalconas , Diterpenos , Humanos
9.
Arch Virol ; 166(9): 2505-2520, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34236511

RESUMO

In this study, a novel Escherichia coli-specific bacteriophage, vB_EcoM_IME392, was isolated from chicken farm sewage in Qingdao, China. The genome of IME392 was found by next-generation sequencing to be 116,460 base pairs in length with a G+C content of 45.4% (GenBank accession number MH719082). BLASTn results revealed that only 2% of the genome sequence of IME392 shows sequence similarity to known phage sequences in the GenBank database, which indicates that IME392 is a novel bacteriophage. Transmission electron microscopy showed that IME392 belongs to the family Myoviridae. The host range, the multiplicity of infection, and a one-step growth curve were also determined.


Assuntos
Colífagos/genética , Escherichia coli/virologia , Myoviridae/genética , Sequenciamento Completo do Genoma , Composição de Bases , Sequência de Bases , China , Mapeamento Cromossômico , Colífagos/classificação , DNA Viral/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Hospedeiro , Concentração de Íons de Hidrogênio , Myoviridae/classificação , Filogenia , Proteômica , Esgotos/virologia , Temperatura
10.
Front Microbiol ; 12: 668319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220752

RESUMO

Vibrio alginolyticus is one of the most important of pathogens that can infect humans and a variety of aquatic animals, and it can cause food poisoning and septicemia in humans. Widely used antibiotics are gradually losing their usefulness, and phages are gaining more attention as new antibacterial strategies. To have more potential strategies for controlling pathogenic bacteria, we isolated a novel V. alginolyticus phage BUCT549 from seafood market sewage. It was classified as a new member of the family Siphoviridae by transmission electron microscopy and a phylogenetic tree. We propose creating a new genus for BUCT549 based on the intergenomic similarities (maximum is 56%) obtained from VIRIDIC calculations. Phage BUCT549 could be used for phage therapy due to its stability in a wide pH (3.0-11.0) range and high-temperature (up to 60°C) environment. It had a latent period of 30-40 min and a burst size of 141 PFU/infected bacterium. In the phylogenetic tree based on a terminase large subunit, BUCT549 was closely related to eight Vibrio phages with different species of host. Meanwhile, our experiments proved that BUCT549 has the ability to infect a strain of Vibrio parahaemolyticus. A coevolution experiment determined that three strains of tolerant V. alginolyticus evaded phage infestation by mutating the MSHA-related membrane protein expression genes, which caused the loss of flagellum. This research on novel phage identification and the mechanism of infestation will help phages to become an integral part of the strategy for biological control agents.

11.
Virus Res ; 301: 198465, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34052250

RESUMO

Stenotrophomonas maltophilia is a common conditional pathogen, and it is naturally resistant to most commonly used clinical antibiotics. The bacteriophage is considered to be a potential antibiotic alternative for treating multi-drug-resistant bacteria. In this study, a bacteriophage BUCT555 was isolated from hospital sewage for lysing the clinical multi-drug resistant Stenotrophomonas maltophilia. Electron microscopy studies revealed this phage belongs to the Podoviridae family. The double-stranded DNA genome of bacteriophage BUCT555 is composed of 39,440 bp with a GC content of 61.43%. The genome contains 57 open reading frames, 14 of which had assigned functions, while no virulence related genes, antibiotic resistance genes or tRNA were identified. The burst size of BUCT555 was 204 pfu per infected cell. Structure proteins of bacteriophage BUCT555 generated by SDS-PAGE and HPLC-MS revealed that it contains seven proteins with molecular weight ranging from 19 to 89 kDa. BLASTn analysis showed that phage BUCT555 has 2% homology with other phages in NCBI database, suggesting BUCT555 is a new phage genus of Podoviridae that infects Stenotrophomonas maltophilia. Characterization of the bacteriophage BUCT555 enriches our knowledge about the diversity of Stenotrophomonas maltophilia bacteriophages.


Assuntos
Bacteriófagos , Podoviridae , Stenotrophomonas maltophilia , Bacteriófagos/genética , Genoma Viral , Genômica , Fases de Leitura Aberta , Podoviridae/genética , Stenotrophomonas maltophilia/genética
12.
Virus Genes ; 57(2): 205-216, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33471272

RESUMO

Stenotrophomonas maltophilia (hereinafter referred to as S. maltophilia) has developed into an important opportunistic pathogenic bacterium, which is prevalent in nosocomial and community infections, and has adverse effects on patients with a compromised immune system. Phage vB_SmaS_BUCT548 was isolated from sewage of Beijing 307 Hospital with S. maltophilia (strain No.824) as a host. Phage morphology was observed by transmission electron microscopy and its biological and genomic characteristics were determined. The electron microscope shows that the bacteriophage belonged to the Siphoviridae and MOI is 0.001. One-step growth curve shows that the incubation period is 30 min and the burst size is 134 PFU/Cell. The host range is relatively wide and it can lysis 11of 13 S. maltophilia strains. Next-Generation Sequencing (NGS) results show that the genome sequence is a dsDNA with 62354 bp length, and the GC content is 56.3% (GenBank: MN937349). One hundred and two online reading frames (ORFs) are obtained after RAST online annotation and the BlastN nucleic acid comparison shows that the phage had low homology with other phages in NCBI database. This study reports a novel S. maltophilia phage named vB_SmaS_BUCT548, which has a short incubation period, strong lytic ability, and a wide host range. The main characteristic of this bacteriophage is the novelty of the genomic sequence and the analysis of the other characteristics provides basic data for further exploring the interaction mechanism between the phage and the host.


Assuntos
Siphoviridae/genética , Stenotrophomonas maltophilia/virologia , DNA Viral , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Hospedeiro , Análise de Sequência de DNA , Esgotos/virologia , Siphoviridae/fisiologia , Siphoviridae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...