Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Exp Hypertens ; 46(1): 2402260, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39305040

RESUMO

BACKGROUND: Gestational diabetes can lead to increased blood pressure in offspring, accompanied by impaired renal sodium excretion function and vasoconstriction and diastole dysfunction. However, there are few studies on whether it is accompanied by increased sympathetic nerve activity. METHODS: Pregnant C57BL/6 mice were intraperitoneally injected with streptozotocin (35 mg/kg) or citrate buffer at day 0 of gestation. The mice of control mother offspring (CMO) and diabetic mother offspring (DMO) at 16 weeks of age were infused with vehicle (artificial cerebrospinal fluid, aCSF, 0.4 µL/h) or tempol (1 mmol/L, 0.4 µL/h) into the bilateral paraventricular nucleus (PVN) of mice for 4 weeks, respectively. RESULTS: Compared with CMO group, SBP and peripheral sympathetic nerve activity (increased heart rate, LF/HF and plasma norepinephrine and decreased SDNN and RMSSD) were increased in DMO group, which was accompanied by increased angiotensin II type-1 receptor (AT1R) expression and function in PVN. The increase in AT1R expression levels was attributed to a decrease in the methylation level of the AT1R promoter region, resulting in an increase in AT1R mRNA levels in PVN of DMO. Moreover, compared with CMO group, the levels of oxidative stress were increased and DNMT1 expression was decreased in PVN of DMO. Bilateral PVN infusion of tempol attenuated oxidative stress increased the level of DNMT1 expression and the binding of DNMT1 to the AT1R promoter region, which reduced mRNA and protein expression level of AT1R, heart rate and SBP in DMO, but not in CMO. CONCLUSIONS: The present study provides evidence for overactive sympathetic nervous systems in the pathogenesis of gestational diabetes-induced hypertension in offspring. Central antioxidant intervention in the PVN may be an important treatment strategy for fetal-programmed hypertension.


Assuntos
Diabetes Mellitus Experimental , Diabetes Gestacional , Hipertensão , Camundongos Endogâmicos C57BL , Sistema Nervoso Simpático , Animais , Gravidez , Sistema Nervoso Simpático/fisiopatologia , Feminino , Camundongos , Diabetes Gestacional/fisiopatologia , Hipertensão/fisiopatologia , Hipertensão/etiologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/complicações , Óxidos N-Cíclicos/farmacologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Marcadores de Spin , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Pressão Sanguínea/fisiologia , Receptor Tipo 1 de Angiotensina/genética , Masculino , Frequência Cardíaca/fisiologia , Estresse Oxidativo
2.
Acta Pharmacol Sin ; 45(4): 728-737, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38086898

RESUMO

Stimulation of adult cardiomyocyte proliferation is a promising strategy for treating myocardial infarction (MI). Earlier studies have shown increased CCL2 levels in plasma and cardiac tissue both in MI patients and mouse models. In present study we investigated the role of CCL2 in cardiac regeneration and the underlying mechanisms. MI was induced in adult mice by permanent ligation of the left anterior descending artery, we showed that the serum and cardiac CCL2 levels were significantly increased in MI mice. Intramyocardial injection of recombinant CCL2 (rCCL2, 1 µg) immediately after the surgery significantly promoted cardiomyocyte proliferation, improved survival rate and cardiac function, and diminished scar sizes in post-MI mice. Alongside these beneficial effects, we observed an increased angiogenesis and decreased cardiomyocyte apoptosis in post-MI mice. Conversely, treatment with a selective CCL2 synthesis inhibitor Bindarit (30 µM) suppressed both CCL2 expression and cardiomyocyte proliferation in P1 neonatal rat ventricle myocytes (NRVMs). We demonstrated in NRVMs that the CCL2 stimulated cardiomyocyte proliferation through STAT3 signaling: treatment with rCCL2 (100 ng/mL) significantly increased the phosphorylation levels of STAT3, whereas a STAT3 phosphorylation inhibitor Stattic (30 µM) suppressed rCCL2-induced cardiomyocyte proliferation. In conclusion, this study suggests that CCL2 promotes cardiac regeneration via activation of STAT3 signaling, underscoring its potential as a therapeutic agent for managing MI and associated heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Camundongos , Animais , Ratos , Quimiocina CCL2/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos , Insuficiência Cardíaca/metabolismo , Regeneração , Camundongos Endogâmicos C57BL , Apoptose , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA