Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 73: 103143, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754271

RESUMO

BACKGROUND: Our previous studies have shown that lipoxin A4 (LXA4) can serve as a potential biomarker for assessing the efficacy of exercise therapy in knee osteoarthritis (KOA), and fibroblast-like synoviocytes (FLSs) may play a crucial role in KOA pain as well as in the progression of the pathology. OBJECTIVE: By analyzing the GSE29746 dataset and collecting synovial samples from patients with different Kellgren-Lawrence (KL) grades for validation, we focused on exploring the potential effect of LXA4 on ferroptosis in FLSs through the ESR2/LPAR3/Nrf2 axis to alleviate pain and pathological advancement in KOA. METHODS: The association between FLSs ferroptosis and chondrocyte matrix degradation was explored by cell co-culture. We overexpressed and knocked down LPAR3 in vitro to explore its potential mechanism in FLSs. A rat model of monosodium iodoacetate (MIA)-induced KOA was constructed and intervened with moderate-intensity treadmill exercise and intraperitoneal injection of PHTPP to investigate the effects of the LXA4 intracellular receptor ESR2 on exercise therapy. RESULTS: ESR2, LPAR3, and GPX4 levels in the synovium decreased with increasing KL grade. After LXA4 intervention in the co-culture system, GPX4, LPAR3, and ESR2 were upregulated in FLSs, collagen II was upregulated in chondrocytes, and MMP3 and ADAM9 were downregulated. LPAR3 overexpression upregulated the expression of GPX4, Nrf2, and SOD1 in FLSs, while downregulating the expression of MMP13 and MMP3; LPAR3 knockdown reversed these changes. Moderate-intensity platform training improved the behavioral manifestations of pain in KOA rats, whereas PHTPP treatment partially reversed the improvement in synovial and cartilage pathologies induced by platform training. CONCLUSION: LXA4 inhibited FLSs ferroptosis by activating the ESR2/LPAR3/Nrf2 axis, thereby alleviating the pain and pathological progression of KOA. This study brings a new target for the treatment of KOA and also leads to a deeper understanding of the potential mechanisms of exercise therapy for KOA.


Assuntos
Ferroptose , Lipoxinas , Fator 2 Relacionado a NF-E2 , Osteoartrite do Joelho , Sinoviócitos , Animais , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/terapia , Osteoartrite do Joelho/patologia , Ratos , Lipoxinas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sinoviócitos/metabolismo , Humanos , Masculino , Modelos Animais de Doenças , Fibroblastos/metabolismo , Transdução de Sinais , Ratos Sprague-Dawley , Membrana Sinovial/metabolismo , Progressão da Doença
2.
J Transl Med ; 21(1): 661, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741987

RESUMO

BACKGROUND: The prevention and treatment of osteoarthritis (OA) pose a major challenge in its research. The synovium is a critical tissue in the systematic treatment of OA. The present study aimed to investigate potential target genes and their correlation with iron overload in OA patients. METHODS: The internal datasets for analysis included the microarray datasets GSE46750, GSE55457, and GSE56409, while the external datasets for validation included GSE12021 and GSE55235. The GSE176308 dataset was used to generate single-cell RNA sequencing profiles. To investigate the expression of the target genes in synovial samples, quantitative reverse transcription-PCR, western blotting, and immunohistochemical assay were conducted. ELISA was used to detect the levels of ferritin and Fe2+ in both serum and synovium. RESULTS: JUN and ZFP36 were screened from the differentially expressed genes, and their mRNA were significantly reduced in the OA synovium compared to that in normal synovium. Subsequently, complex and dynamically evolving cellular components were observed in the OA synovium. The mRNA level of JUN and ZFP36 differed across various cell clusters of OA synovium and correlated with immune cell infiltration. Moreover, ferritin and Fe2+ were significantly increased in the serum and synovium of OA patients. Further, we found that JUN elevated and ZFP36 decreased at protein level. CONCLUSIONS: The synovium is a sensitive tissue for mapping the adverse effects of systemic iron overload in OA. JUN and ZFP36 represent potential target genes for attenuating iron overload during OA treatment. Some discrepancies between the transcription and protein levels of JUN suggest that post-transcriptional modifications may be implicated. Future studies should also focus on the roles of JUN and ZFP36 in inducing changes in cellular components in the synovium during OA pathogenesis.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Sobrecarga de Ferro , Osteoartrite , Humanos , Bioensaio , Ferritinas , Sobrecarga de Ferro/genética , Osteoartrite/genética
3.
Front Immunol ; 14: 1090596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817415

RESUMO

Osteoarthritis (OA) is one of the most common refractory degenerative joint diseases worldwide. Synovitis is believed to drive joint cartilage destruction during OA pathogenesis. Cuproptosis is a novel form of copper-induced cell death. However, few studies have examined the correlations between cuproptosis-related genes (CRGs), immune infiltration, and synovitis. Therefore, we analyzed CRGs in synovitis during OA. Microarray datasets (GSE55235, GSE55457, GSE12021, GSE82107 and GSE176308) were downloaded from the Gene Expression Omnibus database. Next, we conducted differential and subtype analyses of CRGs across synovitis. Immune infiltration and correlation analyses were performed to explore the association between CRGs and immune cell abundance in synovitis. Finally, single-cell RNA-seq profiling was performed using the GSE176308 dataset to investigate the expression of CRGs in the various cell clusters. We found that the expression of five CRGs (FDX1, LIPT1, PDHA1, PDHB, and CDKN2A) was significantly increased in the OA synovium. Moreover, abundant and various types of immune cells infiltrated the synovium during OA, which was correlated with the expression of CRGs. Additionally, single-cell RNA-seq profiling revealed that the cellular composition of the synovium was complex and that their proportions varied greatly as OA progressed. The expression of CRGs differed across various cell types in the OA synovium. The current study predicted that cuproptosis may be involved in the pathogenesis of synovitis. The five screened CRGs (FDX1, LIPT1, PDHA1, PDHB, and CDKN2A) could be explored as candidate biomarkers or therapeutic targets for OA synovitis.


Assuntos
Apoptose , Osteoartrite , Sinovite , Humanos , Biomarcadores/metabolismo , Análise em Microsséries , Osteoartrite/metabolismo , Membrana Sinovial/patologia , Sinovite/metabolismo , Cobre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...