Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38541443

RESUMO

To accurately characterize the mesoscopic properties of NEPE (Nitrate Ester Plasticized Polyether) propellant, the mechanical contraction method was used to construct a representative volume element (RVE) model. Based on this model, the macroscopic mechanical response of NEPE propellant at a strain rate of 0.0047575 s-1 was simulated and calculated, and the parameters of the cohesive zone model (CZM) were inversely optimized using the Hooke-Jeeves algorithm by comparing the simulation results with the results of the uniaxial tensile test of NEPE propellants. Additionally, the macroscopic mechanical behavior of NEPE composite solid propellants at strain rates of 0.00023776 s-1 and 0.023776 s-1 was also predicted. The mesoscopic damage evolution process of NEPE propellants was investigated by the established model. The study results indicate that the predicted curves are relatively consistent with the basic features and change trends of the test curves. Therefore, the established model can effectively simulate the mesoscopic damage process of NEPE composite solid propellants and their macroscopic mechanical properties.

2.
Chem Commun (Camb) ; 59(12): 1633-1636, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36683591

RESUMO

A new type of tailor-made polymeric additive, poly(ethylene phosphate acrylonitrile), has been proposed as a multifunctional polymeric additive for endowing the carbonate electrolyte with synergistically regulated properties of good flame-retardance, enhanced Li-ion dissociation/transportation behavior and a stable LiFePO4 cathode electrolyte interphase (CEI) layer. Thus, an ultrahigh stable operation of 1500 cycles at the 20C-rate with a good discharge capacity is obtained.

3.
J Phys Chem Lett ; 14(1): 16-23, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36562710

RESUMO

Artificial polymeric solid electrolyte interfaces (APSEIs) are an emerging material that enables use of a lithium metal anode as a lithium metal battery technique with high energy density. However, the poor ionic conductivity, low lithium transference number, and bad compatibity with lithium metal anode lead to a large dissipative loss of energy capacity. Here we report that, by properly constructing a brush-like structure in cellulose nanofibril (CNF) based APSEIs, a good ion-aggregation morphology with interconnected ionic conducting channels can be built, such that the Li-ion conduction in the APSEI layer becomes highly efficient. The optimal approach to constructing such an ionic highway is proved computationally using coarse-grained molecular dynamics (CGMD) simulations and implemented experimentally based on transmission electron microscopy (TEM) and atomic force microscopy (AFM). In addition, Li-ion exchange structures and hydroxyl-abundant structures endow the APSEIs with good ability to suppress dendrite growth and excellent compatibility with the anode surface.

4.
ACS Appl Mater Interfaces ; 14(50): 55664-55673, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475302

RESUMO

Developing a poly(ethylene oxide) (PEO)-based polymer electrolyte with high ionic conductivity and robust mechanical property is beneficial for real applications of all-solid-state lithium metal batteries (ASSLMBs). Herein, an excellent organic/inorganic interface compatibility of all-solid-state composite polymer electrolytes (CPEs) is achieved using a novel imidazolium-type poly(ionic liquid) with strong electrostatic interactions, providing insights into the achievement of highly stable CPEs. The key properties such as micromorphologies, thermal behavior, crystallinity, tLi+, mechanical property, lithium anode surficial morphology, and electrochemical performance are systematically investigated. The combined experimental and density functional theory (DFT) simulation results exhibit that the strong electrostatic interaction and ion-dipole interaction cooperated to improve the compatibility of the CPE, with a high ionic conductivity of 1.46 × 10-4 S cm-1 at 40 °C and an incredible mechanical strain of 2000% for dendrite-free and highly stable all-solid-state LMBs. This work affords a promising strategy to accelerate the development of PEO-based polymer electrolytes for real applications in ASSLMBs.

5.
Ultrason Sonochem ; 80: 105803, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34689067

RESUMO

To improve the soybean protein content (SPC), flavor and quality of soymilk, the effects of dual-frequency ultrasound at different angles (40 + 20 kHz 0°, 40 + 20 kHz 30°, 40 + 20 kHz 45°) on physicochemical properties and soybean protein (SP) structure of raw soymilk were mainly studied and compared with the conventional single-frequency (40 kHz, 20 kHz) ultrasound. Furthermore, the intensity of the ultrasonic field in real-time was monitored via the oscilloscope and spectrum analyzer. The results showed that 40 + 20 kHz 45° treatment significantly increased SPC. The ultrasonic field intensity of 40 + 20 kHz 0° treatment was the largest (8.727 × 104 W/m2) and its distribution was the most uniform. The emulsifying stability of SP reached the peak value (233.80 min), and SP also had the largest particle size and excellent thermal stability. The protein solubility of 40 + 20 kHz 30° treatment attained peak value of 87.09%. 20 kHz treatment significantly affected the flavor of okara. The whiteness and brightness of raw soymilk treated with 40 kHz were the highest and the system was stable. Hence, the action mode of ultrasonic technology can be deeply explored and the feasibility for improving the quality of soymilk can be achieved.


Assuntos
Leite de Soja , Proteínas de Soja , Paladar , Tecnologia , Ultrassom
6.
ACS Appl Mater Interfaces ; 11(21): 19413-19420, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31058482

RESUMO

High-performance solid-state electrolytes with healability to repair mechanical damages are important for the fabrication of Li-ion batteries (LIBs) with enhanced safety and prolonged service life. In this study, we present the fabrication of healable, highly conductive, flexible, and nonflammable ionogel electrolytes for use in LIBs by loading ionic liquids and Li salts within a hydrogen-bonded supramolecular poly(ionic liquid) copolymer network. The ionogel electrolytes exhibit ionic conductivities as high as 10-3 S/cm, which is comparable to the conventional liquid electrolytes. The Li/LiFePO4 battery assembled with the ionogel membrane exhibits excellent cycling performance and delivers a steady high discharge capacity of 147.5 mA h g-1 and Coulombic efficiency of 99.7% after 120 cycles at the charge/discharge rate of 0.2 C. Importantly, the ionogel membranes can heal damages outside or inside a battery because of the reversible nature of the supramolecular interactions between the components. The damaged ionogel membranes after being healed can effectively restore the original performance of the LIBs.

7.
Biotechnol Appl Biochem ; 66(2): 247-253, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30548933

RESUMO

The present study aimed to investigate the protective effects of salidroside (SAL) on 1-methyl-4-phenylpyridinium (MPP+ )-induced PC12 cell model for Parkinson's disease. PC12 cells were pretreated with SAL in different concentrations and then exposed to MPP+ . To evaluate the effects of SAL on cytotoxicity, the survival rate was tested by the 3-(4,5-dimethylthiazol-2-yl)-2,5-dimethyltetrazolium bromide (MTT) assay and the apoptosis was tested via flow cytometry and Western blot. Reactive oxygen species (ROS), glutathione (GSH), and malondialdehyde (MDA) were detected to analyze the effects of SAL on oxidative stress. The mRNA and protein levels of inflammatory factors TNF-α and IL-1ß were also determined by real-time quantitative polymerase chain reaction and Western blot. Pretreatment with SAL effectively relieved the MPP+ cytotoxic effects and decreased the release of ROS production and inflammatory cytokines. SAL also inhibited apoptosis, suppressed MDA activity, and increased GSH levels in MPP+ -treated PC12 cells. Moreover, the expression levels of caspase-9, caspase-3, and Bax were significantly decreased in the SAL treatment groups compared with the MPP+ group, whereas Bcl-2 expression was significantly increased in the SAL treatment groups. In summary, the overall results suggested that SAL have neuroprotective effects on the MPP+ -induced PC12 cell model by inhibiting inflammation, oxidative stress, and cell apoptosis. SAL may be a potential active product to protect against Parkinson's disease.


Assuntos
Apoptose/efeitos dos fármacos , Glucosídeos/farmacologia , Intoxicação por MPTP/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Fenóis/farmacologia , Animais , Caspase 3/metabolismo , Caspase 9/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Células PC12 , Ratos , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...