Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Anaesth ; 131(5): 914-920, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37739904

RESUMO

BACKGROUND: The pharmacokinetic properties of the new benzodiazepine remimazolam have been studied only in adults. We investigated the pharmacokinetics of remimazolam after i.v. infusion in anaesthetised paediatric patients. METHODS: Twenty-four children (2-6 yr, ASA physical status 1-2, BMI 15-18 kg m-2) undergoing general anaesthesia with sevoflurane were enrolled. During surgery, remimazolam was administered as an i.v. infusion over 1 h at 5 mg kg-1 h-1 for 5 min, followed by 1.5 mg kg-1 h-1 for 55 min. Plasma concentrations of remimazolam and its metabolite CNS7054 were determined from arterial blood samples using ultra-high performance liquid chromatography-mass spectrometry. Pharmacokinetic modelling was performed by population analysis. RESULTS: Pharmacokinetics were best described by a three-compartment model for remimazolam and a two-compartment model for CNS7054 linked by a transit compartment. Remimazolam showed a high clearance of 15.9 (12.9, 18.2) ml kg-1 min-1 (median, Q25, Q75), a small central volume of distribution of 0.11 (0.08, 0.14) L kg-1 and a short terminal half-life of 67 (49, 85) min. The context-sensitive half-time after an infusion of 4 h was 17 (12, 21) min. The metabolite CNS7054 showed a low clearance of 0.89 (0.33, 1.40) ml kg-1 min-1, a small central volume of distribution of 0.011 (0.005, 0.016) L kg-1, and a long terminal half-life of 321 (230, 770) min. CONCLUSIONS: Remimazolam in children was characterised by a high clearance and short context-sensitive half-time. When normalised to weight, pharmacokinetic properties were similar to those reported for adults. CLINICAL TRIAL REGISTRATION: ChiCTR2200057629.


Assuntos
Anestesia Geral , Benzodiazepinas , Adulto , Criança , Humanos , Infusões Intravenosas , Cinética
2.
J Exp Clin Cancer Res ; 41(1): 81, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241150

RESUMO

BACKGROUND: Tumor budding is included in the routine diagnosis of colorectal cancer (CRC) and is considered a tumor prognostic factor independent of TNM staging. This study aimed to identify the fibroblast-mediated effect of tumor bud-derived C-C chemokine ligand 5 (CCL5) on the tumor microenvironment (TME). METHODS: Recruitment assays and a human cytokine array were used to detect the main cytokines that CRC tumor buds secrete to recruit fibroblasts. siRNA transfection and inhibitor treatment were used to investigate the role of fibroblast CCL5 receptors in fibroblast recruitment. Subsequently, transcriptome sequencing was performed to explore the molecular changes occurring in fibroblasts upon stimulation with CCL5. Finally, clinical specimens and orthotopic xenograft mouse models were studied to explore the contribution of CCL5 to angiogenesis and collagen synthesis. RESULTS: Hematoxylin-eosin staining and immunochemistry revealed a higher number of fibroblasts at the invasive front of CRC tissue showing tumor budding than at sites without tumor budding. In vitro experiments demonstrated that CCL5 derived from tumor buds could recruit fibroblasts by acting on the CCR5 receptors on fibroblasts. Tumor bud-derived CCL5 could also positively regulate solute carrier family 25 member 24 (SLC25A24) expression in fibroblasts, potentially activating pAkt-pmTOR signaling. Moreover, CCL5 could increase the number of α-SMAhigh CD90high FAPlow fibroblasts and thus promote tumor angiogenesis by enhancing VEGFA expression and making fibroblasts transdifferentiate into vascular endothelial cells. Finally, the results also showed that CCL5 could promote collagen synthesis through fibroblasts, thus contributing to tumor progression. CONCLUSIONS: At the invasive front of CRC, tumor bud-derived CCL5 can recruit fibroblasts via CCR5-SLC25A24 signaling, further promoting angiogenesis and collagen synthesis via recruited fibroblasts, and eventually create a tumor-promoting microenvironment. Therefore, CCL5 may serve as a potential diagnostic marker and therapeutic target for tumor budding in CRC.


Assuntos
Neoplasias Colorretais , Células Endoteliais , Animais , Antiporters/metabolismo , Antiporters/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Quimiocina CCL5/genética , Neoplasias Colorretais/patologia , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos , Proteínas Mitocondriais/metabolismo , Receptores CCR5 , Transdução de Sinais , Microambiente Tumoral
3.
Cell Death Differ ; 28(12): 3251-3269, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34131310

RESUMO

Tumour metastasis is a major reason accounting for the poor prognosis of colorectal cancer (CRC), and the discovery of targets in the primary tumours that can predict the risk of CRC metastasis is now urgently needed. In this study, we identified autophagy-related protein 9B (ATG9B) as a key potential target gene for CRC metastasis. High expression of ATG9B in tumour significantly increased the risk of metastasis and poor prognosis of CRC. Mechanistically, we further find that ATG9B promoted CRC invasion mainly through autophagy-independent manner. MYH9 is the pivotal interacting protein for ATG9B functioning, which directly binds to cytoplasmic peptide segments aa368-411 of ATG9B by its head domain. Furthermore, the combination of ATG9B and MYH9 enhance the stability of each other by decreasing their binding to E3 ubiquitin ligase STUB1, therefore preventing them from ubiquitin-mediated degradation, which further amplified the effect of ATG9B and MYH9 in CRC cells. During CRC cell invasion, ATG9B is transported to the cell edge with the assistance of MYH9 and accelerates focal adhesion (FA) assembly through mediating the interaction of endocytosed integrin ß1 and Talin-1, which facilitated to integrin ß1 activation. Clinically, upregulated expression of ATG9B in human CRC tissue is always accompanied with highly elevated expression of MYH9 and associated with advanced CRC stage and poor prognosis. Taken together, this study highlighted the important role of ATG9B in CRC metastasis by promoting focal adhesion assembly, and ATG9B together with MYH9 can provide a pair of potential therapeutic targets for preventing CRC progression.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias Colorretais/genética , Adesões Focais/metabolismo , Proteínas de Membrana/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Animais , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Feminino , Humanos , Camundongos , Metástase Neoplásica , Prognóstico , Análise de Sobrevida
4.
Oncogenesis ; 8(8): 43, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409774

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of tumour-associated mortality worldwide, but no significant improvement in treating HCC has been reported with currently available systemic therapies. Immunotherapy represents a new frontier in tumour therapy. Therefore, the immunobiology of hepatocarcinoma has been under intensive investigation. Decoy receptor 3 (DcR3), a member of the tumour necrosis factor receptor (TNFR) superfamily, is an immune suppressor associated with tumourigenesis and cancer metastasis. However, little is known about the role of DcR3 in the immunobiology of hepatocarcinoma. In this study, we found that overexpression of DcR3 in HCC is mediated by the TGFß3-Smad-Sp1 signalling pathway, which directly targets DcR3 promoter regions. Moreover, overexpression of DcR3 in HCC tissues is associated with tumour invasion and metastasis and significantly promotes the differentiation and secretion of Th2 and Treg cells while inhibiting the differentiation and secretion of Th1 cells. Conversely, knockdown of DcR3 expression in HCC significantly restored the immunity of CD4+ T cells. Inhibition of DcR3 expression may provide a novel immunotherapeutic approach to restoring immunity in HCC patients.

5.
Front Pharmacol ; 10: 756, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333469

RESUMO

Background: Intranasal application is a comfortable, effective, nearly non-invasive, and easy route of administration in children. To date, there is, however, only one pharmacokinetic study on intranasal dexmedetomidine in pediatric populations and none in Chinese children available. Therefore, this study aimed to characterize the pharmacokinetics of intranasally administered dexmedetomidine in Chinese children. Methods: Thirteen children aged 4 to 10 years undergoing surgery received 1 µg/kg dexmedetomidine intranasally. Arterial blood samples were drawn at various time points until 180 min after dose. Dexmedetomidine plasma concentrations were measured with high performance liquid chromatography (HPLC) and mass spectrometry. Pharmacokinetic modeling was performed by population analysis using linear compartment models with first-order absorption. Results: An average peak plasma concentration of 748 ± 30 pg/ml was achieved after 49.6 ± 7.2 min. The pharmacokinetics of dexmedetomidine was best described by a two-compartment model with first-order absorption and an allometric scaling with estimates standardized to 70-kg body weight. The population estimates (SE) per 70 kg bodyweight of the apparent pharmacokinetic parameters were clearance CL/F = 0.32 (0.02) L/min, central volume of distribution V1/F = 34.2 (4.9) L, intercompartmental clearance Q2/F = 10.0 (2.2) L/min, and peripheral volume of distribution V2/F = 34.9 (2.3) L. The estimated absorption rate constant was Ka = 0.038 (0.004) min-1. Conclusions: When compared with studies in Caucasians, Chinese children showed a similar time to peak plasma concentration after intranasal administration, but the achieved plasma concentrations were about three times higher. Possible reasons are differences in age, ethnicity, and mode of administration.

6.
Cancer Biol Ther ; 20(7): 967-978, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30894065

RESUMO

Nontumour cells in the tumour microenvironment, especially fibroblasts, contribute to tumour progression and metastasis. The occurrence and evolution of colorectal cancer (CRC) is closely related to cancer-associated fibroblasts (CAFs). The aim of this work was to evaluate the effects of the growth factors and cytokines secreted by CAFs on CRC progression. The secreted cytokines were examined in CAFs by Human Cytokine Antibody array. We screened 37 differentially secreted cytokines in the culture supernatants of CAFs and NFs. CLEC3B, attractin, kallikrein 5 and legumain were selected for further verification. CLEC3B was more highly expressed in the stroma of CRC tissues than the other 3 cytokines. Immunohistochemistry revealed that CLEC3B expression was associated with serosal invasion by CRC. Patients with co-expression of CLEC3B and α-SMA had worse survival outcomes than those with only CLEC3B or α-SMA expression. CLEC3B secreted from CAFs may promote tumour migration. Knockdown of endogenous CLEC3B in CAFs markedly decreased CRC cell migration, while recombinant human CLEC3B clearly promoted CRC cell migration and actin remodelling. In conclusion, our findings suggest that CAFs promote the CRC cell migration and skeletal reorganization by secreting CLEC3B. CLEC3B might be a potential therapeutic molecule for CRC treatment.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Lectinas Tipo C/biossíntese , Actinas/metabolismo , Adulto , Idoso , Biomarcadores , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Microambiente Tumoral/genética
7.
Int J Biol Macromol ; 117: 721-726, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29864537

RESUMO

Herein, an efficient DES/MIBK biphasic pretreatment system for preparation of furfural and fermentable glucose from lignocellulose was developed with AlCl3 as catalysis. The low-cost and renewable DES (Choline chloride-Oxalic acid) served not only as a Brønsted acid catalyst, but also as a pretreatment solvent in present work, and MIBK as an extracting reagent which can increase the yield of furfural in DES phase. The effects of this biphasic pretreatment on the furfural yield and saccharification of the lignocellulose before and after pretreatment were explored using HPLC, HAPEC, FT-IR, XRD and SEM. Under the best pretreatment condition (at 140 °C for 90 min), furfural could be obtained in 70.3% yield and 80.8% of the pretreated lignocellulose was saccharified, which was 8.4 times higher than that of the raw lignocellulose without pretreatment. In a word, this pretreatment system can be considered as a potential technique for efficient valorization of lignocellulose for production of furfural and fermentable glucose.


Assuntos
Compostos de Alumínio/química , Cloretos/química , Colina/química , Furaldeído/química , Glucose/química , Lignina/química , Metil n-Butil Cetona/química , Ácido Oxálico/química , Cloreto de Alumínio , Catálise
8.
Sci Rep ; 7: 46078, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28470188

RESUMO

Response gene to complement 32 (RGC32) is a transcription factor that regulates the expression of multiple genes involved in cell growth, viability and tissue-specific differentiation. However, the role of RGC32 in tumorigenesis and tumor progression in colorectal cancer (CRC) has not been fully elucidated. Here, we showed that the expression of RGC32 was significantly up-regulated in human CRC tissues versus adjacent normal tissues. RGC32 expression was significantly correlated with invasive and aggressive characteristics of tumor cells, as well as poor survival of CRC patients. We also demonstrated that RGC32 overexpression promoted proliferation, migration and tumorigenic growth of human CRC cells in vitro and in vivo. Functionally, RGC32 facilitated epithelial-mesenchymal transition (EMT) in CRC via the Smad/Sip1 signaling pathway, as shown by decreasing E-cadherin expression and increasing vimentin expression. In conclusion, our findings suggested that overexpression of RGC32 facilitates EMT of CRC cells by activating Smad/Sip1 signaling.


Assuntos
Proteínas de Ciclo Celular/genética , Neoplasias Colorretais/genética , Transição Epitelial-Mesenquimal , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Invasividade Neoplásica , Fenótipo , Análise de Sobrevida , Regulação para Cima/genética
9.
Oncotarget ; 7(47): 77306-77318, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27764793

RESUMO

Decoy receptor 3 (DcR3), a novel member of the tumor necrosis factor receptor (TNFR) family, was recently reported to be associated with tumorigenesis and metastasis. However, the role of DcR3 in human colorectal cancer (CRC) has not been fully elucidated. In this study, we found that DcR3 expression was significantly higher in human colorectal cancer tissues than in paired normal tissues, and that DcR3 expression was strongly correlated with tumor invasion, lymph node metastases and poor prognoses. Moreover, DcR3 overexpression significantly enhanced CRC cell proliferation and migration in vitro and tumorigenesis in vivo. Conversely, DcR3 knockdown significantly repressed CRC cell proliferation and migration in vitro, and DcR3 deficiency also attenuated CRC tumorigenesis and metastasis in vivo. Functionally, DcR3 was essential for TGF-ß3/SMAD-mediated epithelial-mesenchymal transition (EMT) of CRC cells. Importantly, cooperation between DcR3 and TGF-ß3/SMAD-EMT signaling-related protein expression was correlated with survival and survival time in CRC patients. In conclusion, our results demonstrate that DcR3 may be a prognostic biomarker for CRC and that this receptor facilitates CRC development and metastasis by participating in TGF-ß3/SMAD-mediated EMT of CRC cells.


Assuntos
Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Membro 6b de Receptores do Fator de Necrose Tumoral/genética , Membro 6b de Receptores do Fator de Necrose Tumoral/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Camundongos , Transplante de Neoplasias , Prognóstico , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Regulação para Cima
10.
Biochim Biophys Acta ; 1862(6): 1172-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27039663

RESUMO

Our previous studies have shown that PRKA kinase anchor protein 9 (AKAP-9) is involved in colorectal cancer (CRC) cell proliferation and migration in vitro. However, whether or not AKAP-9 is important for CRC development or metastasis in vivo remains unknown. In the present study, we found that AKAP-9 expression was significantly higher in human colorectal cancer tissues than the paired normal tissues. In fact, AKAP-9 level correlated with the CRC infiltrating depth and metastasis. Moreover, the higher AKAP-9 expression was associated with the lower survival rate in patients. In cultured CRC cells, knockdown of AKAP-9 inhibited cell proliferation, invasion, and migration. AKAP-9 deficiency also attenuated CRC tumor growth and metastasis in vivo. Mechanistically, AKAP-9 interacted with cdc42 interacting protein 4 (CIP4) and regulated its expression. CIP4 levels were interrelated to the AKAP-9 level in CRC cells. Functionally, AKAP-9 was essential for TGF-ß1-induced epithelial-mesenchymal transition of CRC cells, and CIP4 played a critical role in mediating the function of AKAP-9. Importantly, CIP4 expression was significantly up-regulated in human CRC tissues. Taken together, our results demonstrated that AKAP-9 facilitates CRC development and metastasis via regulating CIP4-mediated epithelial-mesenchymal transition of CRC cells.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Neoplasias Colorretais/patologia , Proteínas do Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Invasividade Neoplásica/patologia , Proteínas de Ancoragem à Quinase A/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/metabolismo , Proteínas do Citoesqueleto/genética , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/genética , Invasividade Neoplásica/genética , Mapas de Interação de Proteínas
11.
Oncotarget ; 7(10): 11733-43, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26887056

RESUMO

Our earlier findings indicate that the long non-coding RNA MALAT1 promotes colorectal cancer (CRC) cell proliferation, invasion and metastasis in vitro and in vivo by increasing expression of AKAP-9. In the present study, we investigated the molecular mechanism by which MALAT1 enhances AKAP9 expression in CRC SW480 cells. We found that MALAT1 interacts with both SRPK1 and SRSF1. MALAT1 increases AKAP-9 expression by promoting SRPK1-catalyzed SRSF1 phosphorylation. Following MALAT1 knockdown, overexpression of SRPK1 was sufficient to restore SRSF1 phosphorylation and AKAP-9 expression to a level that promoted cell proliferation, invasion and migration in vitro. Conversely, SRPK1 knockdown after overexpression of MALAT1 in SW480 cells diminished SRSF1 phosphorylation and AKAP-9 expression and suppressed cell proliferation, invasion and migration in vitro. These findings suggest MALAT1 increases AKAP-9 expression by promoting SRPK1-catalyzed SRSF1 phosphorylation in CRC cells. These results reveal a novel molecular mechanism by which MALAT1 regulates AKAP-9 expression in CRC cells.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Neoplasias Colorretais/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Humanos , Fosforilação , RNA Longo não Codificante/genética , Fatores de Processamento de Serina-Arginina/genética , Transfecção
12.
Biochim Biophys Acta ; 1852(9): 1876-86, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26071641

RESUMO

N-myc downstream-regulated gene 1 (NDRG1) has been implicated in tumorigenesis and metastasis in different cancers. However, its role in nasopharyngeal carcinoma remains unknown. We found that NDRG1 expression level was high in nasopharyngeal cancer 5-8F cells but low in 5-8F-LN cells with lymphatic metastasis potential. Knockdown of NDRG1 by shRNA promoted 5-8F cell proliferation, migration, and invasion in vitro and its tumorigenesis in vivo. Moreover, NDRG1 deficiency induced an epithelial-mesenchymal transition (EMT) of 5-8F cells as shown by an attenuation of E-cadherin and an induction of N-cadherin and vimentin expression. NDRG1 knockdown also enhanced Smad2 expression and phosphorylation. Smad2 signaling was attenuated in 5-8F cells but was significantly activated in 5-8F-LN cells. Knockdown of Smad2 restored E-cadherin but attenuated N-cadherin expression in NDRG1-deficient 5-8F cells, suggesting a reduction of EMT. Consistently, blockade of Smad2 in 5-8F-LN cells increased E-cadherin while diminishing N-cadherin and vimentin expression. These data indicate that Smad2 mediates the NDRG1 deficiency-induced EMT of 5-8F cells. In tumors derived from NDRG1-deficient 5-8F cells, E-cadherin expression was inhibited while vimentin and Smad2 were increased in a large number of cancer cells. Most importantly, NDRG1 expression was attenuated in human nasopharyngeal carcinoma tissues, resulted in a lower survival rate in patients. The NDRG1 was further decreased in the detached nasopharyngeal cancer cells, which was associated with a further reduced survival rate in patients with lymphatic metastasis. Taken together, these results demonstrated that NDRG1 prevents nasopharyngeal tumorigenesis and metastasis via inhibiting Smad2-mediated EMT of nasopharyngeal cells.

13.
Biochim Biophys Acta ; 1852(1): 166-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25446987

RESUMO

Our previous studies have shown that the 3' end of metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is involved in colorectal cancer (CRC) cell proliferation and migration/invasion in vitro. The role and mechanism of MALAT1 in CRC metastasis in vivo, however, remain largely unknown. In the present study, we found that MALAT1 was up-regulated in human primary CRC tissues with lymph node metastasis. Overexpression of MALAT1 via RNA activation promoted CRC cell proliferation, invasion and migration in vitro, and stimulated tumor growth and metastasis in mice in vivo. Conversely, knockdown of MALAT1 inhibited CRC tumor growth and metastasis. MALAT1 regulated at least 243 genes in CRC cells in a genome-wide expression profiling. Among these genes, PRKA kinase anchor protein 9 (AKAP-9) was significantly up-regulated at both mRNA and protein levels. AKAP-9 was highly expressed in CRC cells with metastatic potential and human primary CRC tissues with lymph node metastasis, but not in normal cells or tissues. Importantly, knockdown of AKAP-9 blocked MALAT1-mediated CRC cell proliferation, migration and invasion. These data indicate that MALAT1 may promote CRC tumor development via its target protein AKAP-9.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proliferação de Células , Neoplasias Colorretais/patologia , Proteínas do Citoesqueleto/metabolismo , Metástase Linfática , Invasividade Neoplásica , RNA Longo não Codificante/fisiologia , Western Blotting , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 2): o537, 2008 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-21201556

RESUMO

In the title salt, C(6)H(16)N(+)·C(5)HCl(3)NO(-), the cation links to the anion, which is almost planar, through an N-H⋯O hydrogen bond. Inter-molecular hydrogen bonds link two cations and two anions into a centrosymmetric cluster. The atoms involved in the hydrogen bonding form a planar octa-gonal arrangement in the crystal structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA