Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(9): e2305032, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37724482

RESUMO

The perception of object's deformability in unstructured interactions relies on both kinesthetic and cutaneous cues to adapt the uncertainties of an object. However, the existing tactile sensors cannot provide adequate cutaneous cues to self-adaptively estimate the material softness, especially in non-standard contact scenarios where the interacting object deviates from the assumption of an elastic half-infinite body. This paper proposes an innovative design of a tactile sensor that integrates the capabilities of two slow-adapting mechanoreceptors within a soft medium, allowing self-decoupled sensing of local pressure and strain at specific locations within the contact interface. By leveraging these localized cutaneous cues, the sensor can accurately and self-adaptively measure the material softness of an object, accommodating variations in thicknesses and applied forces. Furthermore, when combined with a kinesthetic cue from the robot, the sensor can enhance tactile expression by the synergy of two relevant deformation attributes, including material softness and compliance. It is demonstrated that the biomimetic fusion of tactile information can fully comprehend the deformability of an object, hence facilitating robotic decision-making and dexterous manipulation.


Assuntos
Biomimética , Robótica , Mecanorreceptores , Percepção
2.
bioRxiv ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37873106

RESUMO

Cancer cells depend on nicotinamide adenine dinucleotide phosphate (NADPH) to combat oxidative stress and support reductive biosynthesis. One major NAPDH production route is the oxidative pentose phosphate pathway (committed step: glucose-6-phosphate dehydrogenase, G6PD). Alternatives exist and can compensate in some tumors. Here, using genetically-engineered lung cancer model, we show that ablation of G6PD significantly suppresses KrasG12D/+;Lkb1-/- (KL) but not KrasG12D/+;p53-/- (KP) lung tumorigenesis. In vivo isotope tracing and metabolomics revealed that G6PD ablation significantly impaired NADPH generation, redox balance and de novo lipogenesis in KL but not KP lung tumors. Mechanistically, in KL tumors, G6PD ablation caused p53 activation that suppressed tumor growth. As tumor progressed, G6PD-deficient KL tumors increased an alternative NADPH source, serine-driven one carbon metabolism, rendering associated tumor-derived cell lines sensitive to serine/glycine depletion. Thus, oncogenic driver mutations determine lung cancer dependence on G6PD, whose targeting is a potential therapeutic strategy for tumors harboring KRAS and LKB1 co-mutations.

3.
Clin Cancer Res ; 29(16): 3189-3202, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37339179

RESUMO

PURPOSE: Many cancers lack argininosuccinate synthetase 1 (ASS1), the rate-limiting enzyme of arginine biosynthesis. This deficiency causes arginine auxotrophy, targetable by extracellular arginine-degrading enzymes such as ADI-PEG20. Long-term tumor resistance has thus far been attributed solely to ASS1 reexpression. This study examines the role of ASS1 silencing on tumor growth and initiation and identifies a noncanonical mechanism of resistance, aiming to improve clinical responses to ADI-PEG20. EXPERIMENTAL DESIGN: Tumor initiation and growth rates were measured for a spontaneous Ass1 knockout (KO) murine sarcoma model. Tumor cell lines were generated, and resistance to arginine deprivation therapy was studied in vitro and in vivo. RESULTS: Conditional Ass1 KO affected neither tumor initiation nor growth rates in a sarcoma model, contradicting the prevalent idea that ASS1 silencing confers a proliferative advantage. Ass1 KO cells grew robustly through arginine starvation in vivo, while ADI-PEG20 remained completely lethal in vitro, evidence that pointed toward a novel mechanism of resistance mediated by the microenvironment. Coculture with Ass1-competent fibroblasts rescued growth through macropinocytosis of vesicles and/or cell fragments, followed by recycling of protein-bound arginine through autophagy/lysosomal degradation. Inhibition of either macropinocytosis or autophagy/lysosomal degradation abrogated this growth support effect in vitro and in vivo. CONCLUSIONS: Noncanonical, ASS1-independent tumor resistance to ADI-PEG20 is driven by the microenvironment. This mechanism can be targeted by either the macropinocytosis inhibitor imipramine or the autophagy inhibitor chloroquine. These safe, widely available drugs should be added to current clinical trials to overcome microenvironmental arginine support of tumors and improve patient outcomes.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Animais , Camundongos , Sarcoma/tratamento farmacológico , Hidrolases/farmacologia , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Linhagem Celular Tumoral , Argininossuccinato Sintase/genética , Arginina/metabolismo , Neoplasias de Tecidos Moles/tratamento farmacológico , Microambiente Tumoral
4.
Nature ; 614(7947): 349-357, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725930

RESUMO

Tissues derive ATP from two pathways-glycolysis and the tricarboxylic acid (TCA) cycle coupled to the electron transport chain. Most energy in mammals is produced via TCA metabolism1. In tumours, however, the absolute rates of these pathways remain unclear. Here we optimize tracer infusion approaches to measure the rates of glycolysis and the TCA cycle in healthy mouse tissues, Kras-mutant solid tumours, metastases and leukaemia. Then, given the rates of these two pathways, we calculate total ATP synthesis rates. We find that TCA cycle flux is suppressed in all five primary solid tumour models examined and is increased in lung metastases of breast cancer relative to primary orthotopic tumours. As expected, glycolysis flux is increased in tumours compared with healthy tissues (the Warburg effect2,3), but this increase is insufficient to compensate for low TCA flux in terms of ATP production. Thus, instead of being hypermetabolic, as commonly assumed, solid tumours generally produce ATP at a slower than normal rate. In mouse pancreatic cancer, this is accommodated by the downregulation of protein synthesis, one of this tissue's major energy costs. We propose that, as solid tumours develop, cancer cells shed energetically expensive tissue-specific functions, enabling uncontrolled growth despite a limited ability to produce ATP.


Assuntos
Trifosfato de Adenosina , Neoplasias da Mama , Ciclo do Ácido Cítrico , Desaceleração , Neoplasias Pulmonares , Metástase Neoplásica , Neoplasias Pancreáticas , Animais , Camundongos , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético , Glicólise , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Especificidade de Órgãos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Biossíntese de Proteínas
5.
Cell Death Dis ; 14(1): 61, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702816

RESUMO

LKB1 and KRAS are the third most frequent co-mutations detected in non-small cell lung cancer (NSCLC) and cause aggressive tumor growth. Unfortunately, treatment with RAS-RAF-MEK-ERK pathway inhibitors has minimal therapeutic efficacy in LKB1-mutant KRAS-driven NSCLC. Autophagy, an intracellular nutrient scavenging pathway, compensates for Lkb1 loss to support Kras-driven lung tumor growth. Here we preclinically evaluate the possibility of autophagy inhibition together with MEK inhibition as a treatment for Kras-driven lung tumors. We found that the combination of the autophagy inhibitor hydroxychloroquine (HCQ) and the MEK inhibitor Trametinib displays synergistic anti-proliferative activity in KrasG12D/+;Lkb1-/- (KL) lung cancer cells, but not in KrasG12D/+;p53-/- (KP) lung cancer cells. In vivo studies using tumor allografts, genetically engineered mouse models (GEMMs) and patient-derived xenografts (PDXs) showed anti-tumor activity of the combination of HCQ and Trametinib on KL but not KP tumors. We further found that the combination treatment significantly reduced mitochondrial membrane potential, basal respiration, and ATP production, while also increasing lipid peroxidation, indicative of ferroptosis, in KL tumor-derived cell lines (TDCLs) and KL tumors compared to treatment with single agents. Moreover, the reduced tumor growth by the combination treatment was rescued by ferroptosis inhibitor. Taken together, we demonstrate that autophagy upregulation in KL tumors causes resistance to Trametinib by inhibiting ferroptosis. Therefore, a combination of autophagy and MEK inhibition could be a novel therapeutic strategy to specifically treat NSCLC bearing co-mutations of LKB1 and KRAS.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ferroptose/genética , Proteínas Serina-Treonina Quinases/metabolismo , Antineoplásicos/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Autofagia , Linhagem Celular Tumoral , Mutação
6.
Cancer Res ; 82(23): 4429-4443, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36156071

RESUMO

Autophagy is a conserved catabolic process that maintains cellular homeostasis. Autophagy supports lung tumorigenesis and is a potential therapeutic target in lung cancer. A better understanding of the importance of tumor cell-autonomous versus systemic autophagy in lung cancer could facilitate clinical translation of autophagy inhibition. Here, we exploited inducible expression of Atg5 shRNA to temporally control Atg5 levels and to generate reversible tumor-specific and systemic autophagy loss mouse models of KrasG12D/+;p53-/- (KP) non-small cell lung cancer (NSCLC). Transient suppression of systemic but not tumor Atg5 expression significantly reduced established KP lung tumor growth without damaging normal tissues. In vivo13C isotope tracing and metabolic flux analyses demonstrated that systemic Atg5 knockdown specifically led to reduced glucose and lactate uptake. As a result, carbon flux from glucose and lactate to major metabolic pathways, including the tricarboxylic acid cycle, glycolysis, and serine biosynthesis, was significantly reduced in KP NSCLC following systemic autophagy loss. Furthermore, systemic Atg5 knockdown increased tumor T-cell infiltration, leading to T-cell-mediated tumor killing. Importantly, intermittent transient systemic Atg5 knockdown, which resembles what would occur during autophagy inhibition for cancer therapy, significantly prolonged lifespan of KP lung tumor-bearing mice, resulting in recovery of normal tissues but not tumors. Thus, systemic autophagy supports the growth of established lung tumors by promoting immune evasion and sustaining cancer cell metabolism for energy production and biosynthesis, and the inability of tumors to recover from loss of autophagy provides further proof of concept that inhibition of autophagy is a valid approach to cancer therapy. SIGNIFICANCE: Transient loss of systemic autophagy causes irreversible damage to tumors by suppressing cancer cell metabolism and promoting antitumor immunity, supporting autophagy inhibition as a rational strategy for treating lung cancer. See related commentary by Gan, p. 4322.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Autofagia/fisiologia , Glucose/metabolismo , Lactatos
7.
Proc Natl Acad Sci U S A ; 119(21): e2202016119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35537042

RESUMO

Autophagy defects are a risk factor for inflammatory bowel diseases (IBDs) through unknown mechanisms. Whole-body conditional deletion of autophagy-related gene (Atg) Atg7 in adult mice (Atg7Δ/Δ) causes tissue damage and death within 3 mo due to neurodegeneration without substantial effect on intestine. In contrast, we report here that whole-body conditional deletion of other essential Atg genes Atg5 or Fip200/Atg17 in adult mice (Atg5Δ/Δ or Fip200Δ/Δ) caused death within 5 d due to rapid autophagy inhibition, elimination of ileum stem cells, and loss of barrier function. Atg5Δ/Δ mice lost PDGFRα+ mesenchymal cells (PMCs) and Wnt signaling essential for stem cell renewal, which were partially rescued by exogenous Wnt. Matrix-assisted laser desorption ionization coupled to mass spectrometry imaging (MALDI-MSI) of Atg5Δ/Δ ileum revealed depletion of aspartate and nucleotides, consistent with metabolic insufficiency underlying PMC loss. The difference in the autophagy gene knockout phenotypes is likely due to distinct kinetics of autophagy loss, as deletion of Atg5 more gradually extended lifespan phenocopying deletion of Atg7 or Atg12. Thus, autophagy is required for PMC metabolism and ileum stem cell and mammalian survival. Failure to maintain PMCs through autophagy may therefore contribute to IBD.


Assuntos
Autofagia , Intestinos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Células-Tronco , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Sobrevivência Celular , Camundongos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Células-Tronco/metabolismo
9.
Elife ; 92020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33236987

RESUMO

Liver kinase B1 (LKB1), also known as serine/threonine kinase 11 (STK11) is the major energy sensor for cells to respond to metabolic stress. Autophagy degrades and recycles proteins, macromolecules, and organelles for cells to survive starvation. To assess the role and cross-talk between autophagy and Lkb1 in normal tissue homeostasis, we generated genetically engineered mouse models where we can conditionally delete Stk11 and autophagy essential gene, Atg7, respectively or simultaneously, throughout the adult mice. We found that Lkb1 was essential for the survival of adult mice, and autophagy activation could temporarily compensate for the acute loss of Lkb1 and extend mouse life span. We further found that acute deletion of Lkb1 in adult mice led to impaired intestinal barrier function, hypoglycemia, and abnormal serum metabolism, which was partly rescued by the Lkb1 loss-induced autophagy upregulation via inhibiting p53 induction. Taken together, we demonstrated that autophagy and Lkb1 work synergistically to maintain adult mouse homeostasis and survival.


Assuntos
Proteína 7 Relacionada à Autofagia/metabolismo , Autofagia/fisiologia , Homeostase/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Proteína 7 Relacionada à Autofagia/genética , Células Epiteliais , Deleção de Genes , Regulação da Expressão Gênica/fisiologia , Homeostase/genética , Mucosa Intestinal/citologia , Camundongos , Proteínas Serina-Treonina Quinases/genética , Sobrevida , Proteína Supressora de Tumor p53/genética
10.
Environ Pollut ; 265(Pt A): 114926, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32544662

RESUMO

Microplastics have received growing attention as carriers of organic pollutants in the water environment. To better understand the contribution of hydrophobic interaction, hydrogen-bonding interaction, π-π interaction and electrostatic interaction on the adsorption of hydrophilic compounds on microplastics and their adsorption behavior in natural waters, polyethylene terephthalate (PET, <150 µm) was used as an adsorbent and 4-chlorophenol (MCP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) were used as adsorbates. The results of batch adsorption experiments showed that chlorophenols (CPs) reached adsorption sites of PET through film diffusion and intra-particle diffusion. pH greatly affected the adsorption capacity. Hydrophobic interaction was the main adsorption mechanism of undissociated CPs on PET. Hydrogen-bonding interaction was also an adsorption mechanism between undissociated CPs and PET, and the contribution of hydrogen-bonding interaction to adsorption decreased with the increase of chlorine content. Meanwhile, the increase of chlorine content was favorable to the hydrophobic interaction between undissociated CPs and PET. However, higher chlorine content CPs with lower pKa values tended to dissociate at neutral pH condition and resulted in stronger electrostatic repulsion with PET. The increase of solution ionic strength and fulvic acid content negatively affected the adsorption of DCP and TCP on PET, but did not show significant impacts on MCP adsorption. Similarly, the adsorption capacity obtained using Taihu lake water and Bohai seawater as matrices was much lower than that using laboratory water for both DCP and TCP, while the adsorption coefficient (Kd) of MCP remained at approximately 10.6 L/kg to 11.4 L/kg in the three different solution matrices. The Kd values exhibited using natural water matrices consistently followed the order of DCP > MCP > TCP. This study provides insights into the fate of CPs in the presence of microplastics and suggests that the potential risks posed by CPs and microplastics to aqueous ecosystems merit further investigation.


Assuntos
Clorofenóis , Poluentes Químicos da Água/análise , Adsorção , Ecossistema , Cinética , Microplásticos , Plásticos , Polietilenotereftalatos
11.
Genes Dev ; 34(9-10): 688-700, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32193353

RESUMO

Autophagy captures intracellular components and delivers them to lysosomes for degradation and recycling. Conditional autophagy deficiency in adult mice causes liver damage, shortens life span to 3 mo due to neurodegeneration, and is lethal upon fasting. As autophagy deficiency causes p53 induction and cell death in neurons, we sought to test whether p53 mediates the lethal consequences of autophagy deficiency. Here, we conditionally deleted Trp53 (p53 hereafter) and/or the essential autophagy gene Atg7 throughout adult mice. Compared with Atg7Δ/Δ mice, the life span of Atg7Δ/Δp53Δ/Δ mice was extended due to delayed neurodegeneration and resistance to death upon fasting. Atg7 also suppressed apoptosis induced by p53 activator Nutlin-3, suggesting that autophagy inhibited p53 activation. To test whether increased oxidative stress in Atg7Δ/Δ mice was responsible for p53 activation, Atg7 was deleted in the presence or absence of the master regulator of antioxidant defense nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2-/-Atg7Δ/Δ mice died rapidly due to small intestine damage, which was not rescued by p53 codeletion. Thus, Atg7 limits p53 activation and p53-mediated neurodegeneration. In turn, NRF2 mitigates lethal intestine degeneration upon autophagy loss. These findings illustrate the tissue-specific roles for autophagy and functional dependencies on the p53 and NRF2 stress response mechanisms.


Assuntos
Autofagia/genética , Longevidade/genética , Estresse Oxidativo/genética , Proteína Supressora de Tumor p53/genética , Animais , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Deleção de Genes , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Cell Metab ; 31(4): 809-821.e6, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32187526

RESUMO

NADH provides electrons for aerobic ATP production. In cells deprived of oxygen or with impaired electron transport chain activity, NADH accumulation can be toxic. To minimize such toxicity, elevated NADH inhibits the classical NADH-producing pathways: glucose, glutamine, and fat oxidation. Here, through deuterium-tracing studies in cultured cells and mice, we show that folate-dependent serine catabolism also produces substantial NADH. Strikingly, when respiration is impaired, serine catabolism through methylene tetrahydrofolate dehydrogenase (MTHFD2) becomes a major NADH source. In cells whose respiration is slowed by hypoxia, metformin, or genetic lesions, mitochondrial serine catabolism inhibition partially normalizes NADH levels and facilitates cell growth. In mice with engineered mitochondrial complex I deficiency (NDUSF4-/-), serine's contribution to NADH is elevated, and progression of spasticity is modestly slowed by pharmacological blockade of serine degradation. Thus, when respiration is impaired, serine catabolism contributes to toxic NADH accumulation.


Assuntos
Hipóxia Celular , Mitocôndrias/metabolismo , NAD/metabolismo , Oxigênio/metabolismo , Serina/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus
13.
Nat Cancer ; 1(9): 923-934, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-34476408

RESUMO

Macroautophagy (hereafter autophagy) degrades and recycles intracellular components to sustain metabolism and survival during starvation. Host autophagy promotes tumor growth by providing essential tumor nutrients. Autophagy also regulates immune cell homeostasis and function and suppresses inflammation. Although host autophagy does not promote a T-cell anti-tumor immune response in tumors with low tumor mutational burden (TMB), whether this was the case in tumors with high TMB was not known. Here we show that autophagy, especially in the liver, promotes tumor immune tolerance by enabling regulatory T-cell function and limiting stimulator of interferon genes, T-cell response and interferon-γ, which enables growth of high-TMB tumors. We have designated this as hepatic autophagy immune tolerance. Autophagy thereby promotes tumor growth through both metabolic and immune mechanisms depending on mutational load and autophagy inhibition is an effective means to promote an antitumor T-cell response in high-TMB tumors.


Assuntos
Autofagia , Neoplasias , Autofagia/genética , Homeostase , Humanos , Imunidade Celular , Mutação , Neoplasias/genética
14.
Genes Dev ; 33(3-4): 150-165, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30692209

RESUMO

Loss of tumor suppressor liver kinase B1 (LKB1) promotes cancer cell proliferation but also leads to decreased metabolic plasticity in dealing with energy crises. Autophagy is a protective process involving self-cannibalization to maintain cellular energy homeostasis during nutrient deprivation. We developed a mouse model for Lkb1-deficient lung cancer with conditional deletion of essential autophagy gene Atg7 to test whether autophagy compensates for LKB1 loss for tumor cells to survive energy crises. We found that autophagy ablation was synthetically lethal during Lkb1-deficient lung tumorigenesis in both tumor initiation and tumor growth. We further found that autophagy deficiency causes defective intracellular recycling, which limits amino acids to support mitochondrial energy production in starved cancer cells and causes autophagy-deficient cells to be more dependent on fatty acid oxidation (FAO) for energy production, leading to reduced lipid reserve and energy crisis. Our findings strongly suggest that autophagy inhibition could be a strategy for treating LKB1-deficient lung tumors.


Assuntos
Autofagia , Carcinogênese/patologia , Proteínas de Transporte/genética , Metabolismo dos Lipídeos/fisiologia , Neoplasias Pulmonares/fisiopatologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Modelos Animais de Doenças , Metabolismo Energético/genética , Deleção de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular
15.
Nature ; 565(7737): E3, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30523330

RESUMO

In this Letter, 'released' should have been 'regulated' in the sentence starting: 'Deletion of Atg5 in the host similarly regulated circulating arginine and suppressed tumorigenesis...' This has been corrected online.

16.
Nature ; 563(7732): 569-573, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30429607

RESUMO

Autophagy captures intracellular components and delivers them to lysosomes, where they are degraded and recycled to sustain metabolism and to enable survival during starvation1-5. Acute, whole-body deletion of the essential autophagy gene Atg7 in adult mice causes a systemic metabolic defect that manifests as starvation intolerance and gradual loss of white adipose tissue, liver glycogen and muscle mass1. Cancer cells also benefit from autophagy. Deletion of essential autophagy genes impairs the metabolism, proliferation, survival and malignancy of spontaneous tumours in models of autochthonous cancer6,7. Acute, systemic deletion of Atg7 or acute, systemic expression of a dominant-negative ATG4b in mice induces greater regression of KRAS-driven cancers than does tumour-specific autophagy deletion, which suggests that host autophagy promotes tumour growth1,8. Here we show that host-specific deletion of Atg7 impairs the growth of multiple allografted tumours, although not all tumour lines were sensitive to host autophagy status. Loss of autophagy in the host was associated with a reduction in circulating arginine, and the sensitive tumour cell lines were arginine auxotrophs owing to the lack of expression of the enzyme argininosuccinate synthase 1. Serum proteomic analysis identified the arginine-degrading enzyme arginase I (ARG1) in the circulation of Atg7-deficient hosts, and in vivo arginine metabolic tracing demonstrated that serum arginine was degraded to ornithine. ARG1 is predominantly expressed in the liver and can be released from hepatocytes into the circulation. Liver-specific deletion of Atg7 produced circulating ARG1, and reduced both serum arginine and tumour growth. Deletion of Atg5 in the host similarly regulated [corrected] circulating arginine and suppressed tumorigenesis, which demonstrates that this phenotype is specific to autophagy function rather than to deletion of Atg7. Dietary supplementation of Atg7-deficient hosts with arginine partially restored levels of circulating arginine and tumour growth. Thus, defective autophagy in the host leads to the release of ARG1 from the liver and the degradation of circulating arginine, which is essential for tumour growth; this identifies a metabolic vulnerability of cancer.


Assuntos
Arginina/sangue , Autofagia , Neoplasias/sangue , Neoplasias/patologia , Aloenxertos , Animais , Arginase/sangue , Arginase/metabolismo , Arginina/administração & dosagem , Arginina/farmacologia , Autofagia/genética , Proteína 5 Relacionada à Autofagia/deficiência , Proteína 5 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/deficiência , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Suplementos Nutricionais , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Fígado/enzimologia , Masculino , Camundongos , Transplante de Neoplasias , Neoplasias/genética , Ornitina/metabolismo
17.
J Biol Chem ; 291(37): 19545-57, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27466362

RESUMO

Protein synthesis inhibition is an immediate response during stress to switch the composition of protein pool in order to adapt to the new environment. It was reported that this response could be either protective or deleterious. However, how cells choose to live or die upon protein synthesis inhibition is largely unknown. Previously, we have shown that elongation factor-2 kinase (eEF2K), a protein kinase that suppresses protein synthesis during elongation phase, is a positive regulator of apoptosis both in vivo and in vitro Consistently, here we report that knock-out of eEF2K protects mice from a lethal dose of whole-body ionizing radiation at 8 Gy by reducing apoptosis levels in both bone marrow and gastrointestinal tracts. Surprisingly, similar to the loss of p53, eEF2K deficiency results in more severe damage to the gastrointestinal tract at 20 Gy with the increased mitotic cell death in small intestinal stem cells. Furthermore, using epithelial cell lines, we showed that eEF2K is required for G2/M arrest induced by radiation to prevent mitotic catastrophe in a p53-independent manner. Specifically, we observed the elevation of Akt/ERK activity as well as the reduction of p21 expression in Eef2k(-/-) cells. Therefore, eEF2K also provides a protective strategy to maintain genomic integrity by arresting cell cycle in response to stress. Our results suggest that protective versus pro-apoptotic roles of eEF2K depend on the type of cells: eEF2K is protective in highly proliferative cells, such as small intestinal stem cells and cancer cells, which are more susceptible to mitotic catastrophe.


Assuntos
Quinase do Fator 2 de Elongação , Raios gama/efeitos adversos , Intestino Delgado , Mitose , Lesões Experimentais por Radiação , Tolerância a Radiação , Células-Tronco , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Camundongos , Camundongos Knockout , Mitose/genética , Mitose/efeitos da radiação , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/prevenção & controle , Tolerância a Radiação/genética , Tolerância a Radiação/efeitos da radiação , Células-Tronco/metabolismo , Células-Tronco/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Front Physiol ; 7: 258, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458382

RESUMO

Magnesium ion (Mg(2+)) is the fourth most common cation in the human body, and has a crucial role in many physiological functions. Mg(2+) homeostasis is an important contributor to bone development, however, its roles in the development of dental mineralized tissues have not yet been well known. We identified that transient receptor potential cation channel, subfamily M, member 7 (TRPM7), was significantly upregulated in the mature ameloblasts as compared to other ameloblasts through our whole transcript microarray analyses of the ameloblasts. TRPM7, an ion channel for divalent metal cations with an intrinsic serine/threonine protein kinase activity, has been characterized as a key regulator of whole body Mg(2+) homeostasis. Semi-quantitative PCR and immunostaining for TRMP7 confirmed its upregulation during the maturation stage of enamel formation, at which ameloblasts direct rapid mineralization of the enamel matrix. The significantly hypomineralized craniofacial structures, including incisors, molars, and cranial bones were demonstrated by microCT analysis, von Kossa and trichrome staining in Trpm7 (Δkinase∕+) mice. A previously generated heterozygous mouse model with the deletion of the TRPM7 kinase domain. Interestingly, the skeletal phenotype of Trpm7 (Δkinase∕+) mice resembled those found in the tissue-nonspecific alkaline phosphatase (Alpl) KO mice, thus we further examined whether ALPL protein content and alkaline phosphatase (ALPase) activity in ameloblasts, odontoblasts and osteoblasts were affected in those mice. While ALPL protein in Trpm7 (Δkinase∕+) mice remained at the similar level as that in wt mice, ALPase activities in the Trpm7 (Δkinase∕+) mice were almost nonexistent. Supplemented magnesium successfully rescued the activities of ALPase in ameloblasts, odontoblasts and osteoblasts of Trpm7 (Δkinase∕+) mice. These results suggested that TRPM7 is essential for mineralization of enamel as well as dentin and bone by providing sufficient Mg(2+) for the ALPL activity, underlining the key importance of ALPL for biomineralization.

19.
Sci Rep ; 4: 7599, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25534891

RESUMO

TRPM7 is an unusual bi-functional protein containing an ion channel covalently linked to a protein kinase domain. TRPM7 is implicated in regulating cellular and systemic magnesium homeostasis. While the biophysical properties of TRPM7 ion channel and its function are relatively well characterized, the function of the TRPM7 enzymatically active kinase domain is not understood yet. To investigate the physiological role of TRPM7 kinase activity, we constructed mice carrying an inactive TRPM7 kinase. We found that these mice were resistant to dietary magnesium deprivation, surviving three times longer than wild type mice; also they displayed decreased chemically induced allergic reaction. Interestingly, mutant mice have lower magnesium bone content compared to wild type mice when fed regular diet; unlike wild type mice, mutant mice placed on magnesium-depleted diet did not alter their bone magnesium content. Furthermore, mouse embryonic fibroblasts isolated from TRPM7 kinase-dead animals exhibited increased resistance to magnesium deprivation and oxidative stress. Finally, electrophysiological data revealed that the activity of the kinase-dead TRPM7 channel was not significantly altered. Together, our results suggest that TRPM7 kinase is a sensor of magnesium status and provides coordination of cellular and systemic responses to magnesium deprivation.


Assuntos
Fibroblastos/enzimologia , Deficiência de Magnésio/enzimologia , Estresse Oxidativo , Proteínas Quinases/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Embrião de Mamíferos/enzimologia , Embrião de Mamíferos/patologia , Fibroblastos/patologia , Magnésio/metabolismo , Deficiência de Magnésio/genética , Deficiência de Magnésio/patologia , Camundongos , Camundongos Mutantes , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Canais de Cátion TRPM/genética
20.
J Colloid Interface Sci ; 428: 295-301, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24910065

RESUMO

Ethylamine modified vermiculite (Ethyl-VER) with high specific surface area and excellent pore structure was prepared to remove cesium from aqueous solution. The physic-chemical properties of the pristine and modified vermiculite were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), specific surface area (BET) and scanning electron microscopy/energy disperse spectroscopy (SEM/EDS). The corroding effect of ethylamine increased the specific surface area of vermiculite from 4.35 to 15.59 m(2) g(-1), and the average pore diameter decreased from 6.8 to 5.34 nm. Batch adsorption experiments were conducted as a function of pH, initial Cs(+) concentration, contact time, coexisting cations (K(+), Na(+), Ca(2+)) and low-molecular-weight organic acids (acetic acid, oxalic acid, citric acid) to illustrate the adsorption behavior. The study found that the adsorption capacity of cesium in aqueous solution was improved from 56.92 to 78.17 mg g(-1) after modification. The formation of micropores and mesopores and the increased surface area played a critical role in the enhancement of cesium adsorption. Kinetic experiments indicated that the adsorption process can be simulated well with a pseudo-second-order model. The presence of cations or low-molecular-weight organic acids inhibited cesium adsorption in different degrees. On the basis of our results, Ethyl-VER with good surface characteristics and high adsorption capacity is a suitable adsorbent for cesium removal from aqueous solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...