Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 11: 1409439, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994346

RESUMO

Background: Osteoarthritis (OA) entails a prevalent chronic ailment, marked by the widespread involvement of entire joints. Prolonged low-grade synovial inflammation serves as the key instigator for a cascade of pathological alterations in the joints. Objective: The study seeks to explore potential therapeutic targets for OA and investigate the associated mechanistic pathways. Methods: Summary-level data for OA were downloaded from the genome-wide association studies (GWAS) database, expression quantitative trait loci (eQTL) data were acquired from the eQTLGen consortium, and synovial chip data for OA were obtained from the GEO database. Following the integration of data and subsequent Mendelian randomization analysis, differential analysis, and weighted gene co-expression network analysis (WGCNA) analysis, core genes that exhibit a significant causal relationship with OA traits were pinpointed. Subsequently, by employing three machine learning algorithms, additional identification of gene targets for the complexity of OA was achieved. Additionally, corresponding ROC curves and nomogram models were established for the assessment of clinical prognosis in patients. Finally, western blotting analysis and ELISA methodology were employed for the initial validation of marker genes and their linked pathways. Results: Twenty-two core genes with a significant causal relationship to OA traits were obtained. Through the application of distinct machine learning algorithms, MAT2A and RBM6 emerged as diagnostic marker genes. ROC curves and nomogram models were utilized for evaluating both the effectiveness of the two identified marker genes associated with OA in diagnosis. MAT2A governs the synthesis of SAM within synovial cells, thereby thwarting synovial fibrosis induced by the TGF-ß1-activated Smad3/4 signaling pathway. Conclusion: The first evidence that MAT2A and RBM6 serve as robust diagnostic for OA is presented in this study. MAT2A, through its involvement in regulating the synthesis of SAM, inhibits the activation of the TGF-ß1-induced Smad3/4 signaling pathway, thereby effectively averting the possibility of synovial fibrosis. Concurrently, the development of a prognostic risk model facilitates early OA diagnosis, functional recovery evaluation, and offers direction for further therapy.

2.
Tissue Eng Part C Methods ; 30(6): 268-278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38842184

RESUMO

This work employs nitrogen plasma immersion ion implantation (PIII) to modify electrospinning polylactic acid membranes and immobilizes basic fibroblast growth factors (bFGF) by forming crosslinking bonds. The study investigates the modified membranes' surface characteristics and the stimulatory effects of crosslinked bFGF polylactic acid membranes on osteoblast and fibroblast proliferation. The PIII process occurs under low vacuum conditions and is controlled by processing time and power pulse width. The experimental results indicate that, within a 400-second N2-PIII treatment, the spun fibers remain undamaged, demonstrating an increase in hydrophilicity (from 117° to 38°/36°) and nitrogen content (from 0% to 7.54%/8.05%). X-ray photoelectron spectroscopy analysis suggests the formation of a C-N-C=O crosslinked bond. Cell culture and activity assessments indicate that the PIII-treated and crosslinked bFGF film exhibits significantly higher cell growth activity (p < 0.05) than the untreated group. These intergroup differences are attributed to the surface crosslinking bond content. In osteogenic induction, the results for each day show that the treated group performs better. However, the intergroup disparities within the crosslinked bFGF group disappear with prolonged culture time due to the rapid osteogenesis prompted by bFGF. The findings suggest that PIII treatment of electrospinning polylactic acid membranes holds promise in promoting osteogenesis in bone tissue scaffolds.


Assuntos
Materiais Biocompatíveis , Diferenciação Celular , Proliferação de Células , Nanofibras , Osteoblastos , Nanofibras/química , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Animais , Poliésteres/química , Poliésteres/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/química , Gases em Plasma/farmacologia , Camundongos , Osteogênese/efeitos dos fármacos , Ácido Láctico/química , Ácido Láctico/farmacologia , Espectroscopia Fotoeletrônica
3.
Acta Biomater ; 157: 670-682, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36442823

RESUMO

Titanium dioxide (TiO2) nanotubes can improve the osseointegration of pure titanium implants, but this exact mechanism has not been fully elucidated. The purinergic receptor P2Y6 is expressed in bone marrow mesenchymal stem cells (BMSCs) and participates in the regulation of bone metabolism. However, it is unclear as to whether P2Y6 is involved in the osteogenic differentiation of BMSCs induced by TiO2 nanotubes. TiO2 nanotubes were prepared on the surface of titanium specimens using the anodizing method and characterized their features. Quantitative reverse transcriptase polymerase chain reaction and western blotting were used to detect the expression of P2Y6, markers of osteogenic differentiation, and PKCα-ERK1/2. A rat femoral defect model was established to evaluate the osseointegration effect of TiO2 nanotubes combined with P2Y6 agonists. The results showed that the average inner diameter of the TiO2 nanotubes increased with an increase in voltage (voltage range of 30-90V), and the expression of P2Y6 in BMSCs could be upregulated by TiO2 nanotubes in osteogenic culture. Inhibition of P2Y6 expression partially inhibited the osteogenic effect of TiO2 nanotubes and downregulated the activity of the PKCα-ERK1/2 pathway. When using in vitro and in vivo experiments, the osteogenic effect of TiO2 nanotubes when combined with P2Y6 agonists was more pronounced. TiO2 nanotubes promoted the P2Y6 expression of BMSCs during osteogenic differentiation and promoted osteogenesis by activating the PKCα-ERK1/2 pathway. The combined application of TiO2 nanotubes and P2Y6 agonists may be an effective new strategy to improve the osseointegration of titanium implants. STATEMENT OF SIGNIFICANCE: Titanium dioxide (TiO2) nanotubes can improve the osseointegration of pure titanium implants, but this exact mechanism has not been fully elucidated. The purinergic receptor P2Y6 is expressed in bone marrow mesenchymal stem cells (BMSCs) and participates in the regulation of bone metabolism. However, it is unclear as to whether P2Y6 is involved in the osteogenic differentiation of BMSCs induced by TiO2 nanotubes. For the first time, this study revealed the relationship between TiO2 nanotubes and purine receptor P2Y6, and further explored its mode of action, which may provide clues as to the regulatory role of TiO2 nanotubes on osteogenic differentiation of BMSCs. These findings will help to develop novel methods for guiding material design and biosafety evaluation of nano implants.


Assuntos
Células-Tronco Mesenquimais , Nanotubos , Ratos , Animais , Osteogênese , Titânio/farmacologia , Sistema de Sinalização das MAP Quinases , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-alfa/farmacologia , Diferenciação Celular , Células da Medula Óssea , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA