Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 662
Filtrar
1.
mSystems ; : e0025724, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780265

RESUMO

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition characterized by social communication deficiencies and stereotypic behaviors influenced by hereditary and/or environmental risk factors. There are currently no approved medications for treating the core symptoms of ASD. Human fecal microbiota transplantation (FMT) has emerged as a potential intervention to improve autistic symptoms, but the underlying mechanisms are not fully understood. In this study, we evaluated the effects of human-derived FMT on behavioral and multi-omics profiles of the BTBR mice, an established model for ASD. FMT effectively alleviated the social deficits in the BTBR mice and normalized their distinct plasma metabolic profile, notably reducing the elevated long-chain acylcarnitines. Integrative analysis linked these phenotypic changes to specific Bacteroides species and vitamin B6 metabolism. Indeed, vitamin B6 supplementation improved the social behaviors in BTBR mice. Collectively, these findings shed new light on the interplay between FMT and vitamin B6 metabolism and revealed a potential mechanism underlying the therapeutic role of FMT in ASD.IMPORTANCEAccumulating evidence supports the beneficial effects of human fecal microbiota transplantation (FMT) on symptoms associated with autism spectrum disorder (ASD). However, the precise mechanism by which FMT induces a shift in the microbiota and leads to symptom improvement remains incompletely understood. This study integrated data from colon-content metagenomics, colon-content metabolomics, and plasma metabolomics to investigate the effects of FMT treatment on the BTBR mouse model for ASD. The analysis linked the amelioration of social deficits following FMT treatment to the restoration of mitochondrial function and the modulation of vitamin B6 metabolism. Bacterial species and compounds with beneficial roles in vitamin B6 metabolism and mitochondrial function may further contribute to improving FMT products and designing novel therapies for ASD treatment.

2.
Virology ; 595: 110093, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692134

RESUMO

Oncolytic virotherapy stands out as a burgeoning and promising therapeutic paradigm, harnessing the intrinsic cytotoxicity of oncolytic viruses for selective replication and dissemination within tumors. The primary mode of action revolves around the direct eradication of tumor cells. In our previous investigations, we formulated an oncolytic herpes simplex virus type 2 (OH2) and substantiated its anti-tumor efficacy both in vivo and in vitro. Subsequently, we embarked on a phase I/II clinical trial in China (NMPA, 2018L02743) and the USA (FDA, IND 27137) to assess OH2's safety, biodistribution, and anti-tumor activity as a standalone agent in patients with advanced solid tumors. In this investigation, our primary focus was to comprehend the influence of the major capsid protein VP5 of OH2 on its efficacy as an antitumor agent. Our findings underscore that the VP5 protein significantly amplifies OH2's oncolytic impact on A549 cells. Additionally, we observed that VP5 actively promotes the induction of apoptosis in A549 cells, both in vivo and in vitro. Through comprehensive transcriptional sequencing, we further authenticated that the VP5 protein triggers apoptosis-related signaling pathways and Gene Ontology (GO) terms in A549 cells. Moreover, we scrutinized differentially expressed genes in the p53-dependent apoptosis pathway and conducted meticulous in vitro validation of these genes. Subsequently, we delved deeper into unraveling the functional significance of the TP53I3 gene and conclusively affirmed that the VP5 protein induces apoptosis in A549 cells through the TP53I3 gene. These revelations illuminate the underlying mechanisms of OH2's antitumor activity and underscore the pivotal role played by the VP5 protein. The outcomes of our study harbor promising implications for the formulation of effective oncolytic virotherapy strategies in cancer treatment.


Assuntos
Apoptose , Herpesvirus Humano 2 , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Células A549 , Terapia Viral Oncolítica/métodos , Animais , Herpesvirus Humano 2/fisiologia , Herpesvirus Humano 2/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Artigo em Inglês | MEDLINE | ID: mdl-38743541

RESUMO

Federated learning (FL) aims to collaboratively learn a model by using the data from multiple users under privacy constraints. In this article, we study the multilabel classification (MLC) problem under the FL setting, where trivial solution and extremely poor performance may be obtained, especially when only positive data with respect to a single class label is provided for each client. This issue can be addressed by adding a specially designed regularizer on the server side. Although effective sometimes, the label correlations are simply ignored and thus suboptimal performance may be obtained. Besides, it is expensive and unsafe to exchange user's private embeddings between server and clients frequently, especially when training model in the contrastive way. To remedy these drawbacks, we propose a novel and generic method termed federated averaging (FedAvg) by exploring label correlations (FedALCs). Specifically, FedALC estimates the label correlations in the class embedding learning for different label pairs and utilizes it to improve the model training. To further improve the safety and also reduce the communication overhead, we propose a variant to learn fixed class embedding for each client, so that the server and clients only need to exchange class embeddings once. Extensive experiments on multiple popular datasets demonstrate that our FedALC can significantly outperform the existing counterparts.

4.
Heliyon ; 10(8): e29939, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38699727

RESUMO

In the United States, coronavirus disease 2019 (COVID-19) cases have consistently been linked to the prevailing variant XBB.1.5 of SARS-CoV-2 since late 2022. A system has been developed for producing and infecting cells with a pseudovirus (PsV) of SARS-CoV-2 to investigate the infection in a Biosafety Level 2 (BSL-2) laboratory. This system utilizes a lentiviral vector carrying ZsGreen1 and Firefly luciferase (Fluc) dual reporter genes, facilitating the analysis of experimental results. In addition, we have created a panel of PsV variants that depict both previous and presently circulating mutations found in circulating SARS-CoV-2 strains. A series of PsVs includes the prototype SARS-CoV-2, Delta B.1.617.2, BA.5, XBB.1, and XBB.1.5. To facilitate the study of infections caused by different variants of SARS-CoV-2 PsV, we have developed a HEK-293T cell line expressing mCherry and human angiotensin converting enzyme 2 (ACE2). To validate whether different SARS-CoV-2 PsV variants can be used for neutralization assays, we employed serum from rats immunized with the PF-D-Trimer protein vaccine to investigate its inhibitory effect on the infectivity of various SARS-CoV-2 PsV variants. According to our observations, the XBB variant, particularly XBB.1.5, exhibits stronger immune evasion capabilities than the prototype SARS-CoV-2, Delta B.1.617.2, and BA.5 PsV variants. Hence, utilizing the neutralization test, this study has the capability to forecast the effectiveness in preventing future SARS-CoV-2 variants infections.

5.
J Chem Phys ; 160(18)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38716854

RESUMO

The translocation of polymers through nanopores is a complex process influenced by various factors. In this study, the translocation behavior of a two-dimensional active polymer chain, comprised of a head active Brownian particle (ABP) and a tail passive polymer chain, through a nanopore is studied using Langevin dynamics simulations. Results show that the effect of the self-propulsion force of the ABP on the translocation differs significantly from the driving force inside the pore for traditional polymer translocations. Specifically, the translocation time τ initially increases with increasing the magnitude fs of the self-propulsion force and then decreases with a further increase in fs. A small fs lowers the potential barrier for the translocation and thus promotes slow translocations, whereas a large fs directly pulls the polymer chain through the nanopore following the scaling relation τ ∝ fs-1. Moreover, two asymptotic scaling relations between τ and polymer length N, τ ∝ Nα, are found, with the exponent α of about 2.5 for small fs or long N and the exponent α of about 1.4 for short active polymers with large fs. We discover that the slow rotation of the ABP accelerates the translocation process.

6.
Front Oncol ; 14: 1345656, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725628

RESUMO

Background: Remimazolam is a new ultrashort-acting benzodiazepine for sedation and anesthesia. The effects of remimazolam and the mechanism by which it functions in cancer cells have not been determined. This research aimed to explore the mechanism of remimazolam action in colon cancer treatment, using bioinformatics analysis and in vitro experiments. Methods: Cell cycle progression, colony formation, self-renewal capacity, and apoptosis detection were performed in HCT8 cells treated with or without remimazolam. Transcriptome sequencing, Gene Ontology, Kyoto Encyclopedia of Genes and Genome, Protein-Protein Interaction, Gene Set Enrichment Analysis, Western blotting, and qPCR were performed to investigate the mechanism of action of remimazolam in HCT8 colon cancer cells. Results: Remimazolam promoted proliferation and cell-cycle progression of HCT8 cells. After remimazolam treatment, a total of 1,096 differentially expressed genes (DEGs) were identified: 673 genes were downregulated, and 423 genes were upregulated. The DEGs were enriched mainly in "DNA replication", "cell cycle", and "G1/S transition" related pathways. There were 15 DEGs verified by qPCR, and representative biomarkers were detected by Western Bloting. The remimazolam-mediated promotion of cell proliferation and cell cycle was reversed by G1T28, a CDK4/6 inhibitor. Conclusion: Remimazolam promoted cell-cycle progression and proliferation in HCT8 colon cancer cells, indicating that the long-term use of remimazolam has potential adverse effects in the anesthesia of patients with colon cancer.

7.
New Phytol ; 242(6): 2604-2619, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563391

RESUMO

Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase. OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD+ and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild-type (WT) plants under As treatment. Additionally, loss-of-function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain. Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice.


Assuntos
Arsênio , Ácidos Graxos , Regulação da Expressão Gênica de Plantas , Homeostase , Oryza , Oxirredução , Proteínas de Plantas , Plastídeos , Estresse Fisiológico , Oryza/genética , Oryza/efeitos dos fármacos , Oryza/metabolismo , Homeostase/efeitos dos fármacos , Arsênio/toxicidade , Oxirredução/efeitos dos fármacos , Ácidos Graxos/metabolismo , Ácidos Graxos/biossíntese , Plastídeos/metabolismo , Plastídeos/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Mutação/genética , Di-Hidrolipoamida Desidrogenase/metabolismo , Di-Hidrolipoamida Desidrogenase/genética , Espécies Reativas de Oxigênio/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Estresse Oxidativo/efeitos dos fármacos , Arsenitos/toxicidade
8.
J Biol Chem ; 300(6): 107288, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636662

RESUMO

HCN channels are important for regulating heart rhythm and nerve activity and have been studied as potential drug targets for treating depression, arrhythmia, nerve pain, and epilepsy. Despite possessing unique pharmacological properties, HCN channels share common characteristics in that they are activated by hyperpolarization and modulated by cAMP and other membrane lipids. However, the mechanisms of how these ligands bind and modulate HCN channels are unclear. In this study, we solved structures of full-length human HCN3 using cryo-EM and captured two different states, including a state without any ligand bound and a state with cAMP bound. Our structures reveal the novel binding sites for cholesteryl hemisuccinate in apo state and show how cholesteryl hemisuccinate and cAMP binding cause conformational changes in different states. These findings explain how these small modulators are sensed in mammals at the molecular level. The results of our study could help to design more potent and specific compounds to influence HCN channel activity and offer new therapeutic possibilities for diseases that lack effective treatment.

9.
J Am Chem Soc ; 146(15): 10776-10784, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578219

RESUMO

Seeking noble-metal-free catalysts for efficient synthesis of aryl nitriles under mild conditions poses a significant challenge due to the use of hypertoxic cyanides or high-pressure/temperature NH3/O2 in conventional synthesis processes. Herein, we developed a novel framework 1 assembled by [Ni72] nanocages with excellent solvents/pH stability. To investigate the structure-activity relationship of catalytic performance, several isostructural MOFs with different molar ratios of Ni/Cu by doping Cu2+ into framework 1 (Ni0.59Cu0.41 (2), Ni0.81Cu0.19 (3), Ni0.88Cu0.12 (4), and Ni0.92Cu0.08 (5)) were prepared. Catalytic studies revealed that catalyst 3 exhibited remarkable performance in the synthesis of aryl nitriles, utilizing a formamide alternative to hypertoxic NaCN/KCN. Notably, catalyst 3 achieved an excellent TOF value of 9.8 h-1. Furthermore, catalyst 3 demonstrated its applicability in a gram-scale experiment and maintained its catalytic performance even after six recycling cycles, owing to its high stability resulting from significant electrostatic and orbital interactions between the Ni center and ligands as well as a large SOMO-LUMO energy gap supported by DFT calculations. Control experiments and DFT calculations further revealed that the excellent catalytic performance of catalyst 3 originated from the synergistic effect of Ni/Cu. Importantly, this work not only provides a highly feasible method to construct highly stable MOFs containing multinuclear nanocages with exceptional catalytic performance but also represents the first example of a heterogeneous catalyst for the synthesis of aryl nitriles using formamide as the cyanide source.

10.
Carbohydr Res ; 538: 109094, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564900

RESUMO

Human diseases often correlate with changes in protein glycosylation, which can be observed in serum or plasma samples. N-glycosylation, the most common form, can provide potential biomarkers for disease prognosis and diagnosis. However, glycoproteins constitute a relatively small proportion of the total proteins in human serum and plasma compared to the non-glycosylated protein albumin, which constitutes the majority. The detection of microheterogeneity and low glycan abundance presents a challenge. Mass spectrometry facilitates glycoproteomics research, yet it faces challenges due to interference from abundant plasma proteins. Therefore, methods have emerged to enrich N-glycans and N-linked glycopeptides using glycan affinity, chemical properties, stationary phase chemical coupling, bioorthogonal techniques, and other alternatives. This review focuses on N-glycans and N-glycopeptides enrichment in human serum or plasma, emphasizing methods and applications. Although not exhaustive, it aims to elucidate principles and showcase the utility and limitations of glycoproteome characterization.


Assuntos
Glicopeptídeos , Glicoproteínas , Humanos , Glicopeptídeos/química , Glicoproteínas/química , Glicosilação , Espectrometria de Massas/métodos , Polissacarídeos
12.
J Phys Chem Lett ; 15(17): 4694-4704, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38656198

RESUMO

Batteries with intercalation-conversion-type electrodes tend to achieve high-capacity storage, but the complicated reaction process often suffers from confusing electrochemical mechanisms. Here, we reinterpreted the essential issue about the potential of the conversion reaction and whether there is an intercalation reaction in a lithium/sodium-ion battery (LIB/SIB) with the FeP anode based on the evolution of the magnetic phase. Especially, the ever-present intercalation process in a large voltage range followed by the conversion reaction with extremely low potential was confirmed in FeP LIB, while it is mainly the conversion reaction for the sodium storage mechanism in FeP SIB. The insufficient conversion reaction profoundly limits the actual capacity to the expectedly respectable value. Accordingly, a graphene oxide modification strategy was proposed to increase the reversible capacity of FeP LIB/SIB by 99% and 132%, respectively. The results facilitate the development of anode materials with a high capacity and low operating potential.

13.
JMIR Hum Factors ; 11: e51150, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38452366

RESUMO

BACKGROUND: The feasibility of implementing home-based pulmonary rehabilitation (PR) can be assessed from the perspectives of patients with chronic lung disease and health care professionals involved in PR. OBJECTIVE: Through a qualitative inquiry using interviews and the adoption of the people-object-environment framework, this study aims to understand the influences of interpersonal, environmental, and situational factors on the perceptions and considerations of individuals involved in home-based PR for patients with chronic lung disease. METHODS: One-on-one interviews were conducted with 20 patients with chronic lung disease and 20 health care professionals for investigating their attitudes and opinions based on their experiences regarding home-based PR as well as for identifying the key factors affecting the benefits and drawbacks of such therapies. This study further evaluates the feasibility of using digital tools for medical diagnosis and treatment by examining the technology usage of both parties. RESULTS: The 4 key issues that all participants were the most concerned about were as follows: distance to outpatient medical care, medical efficiency, internet connectivity and equipment, and physical space for diagnosis and treatment. Interviews with patients and health care professionals revealed that the use of technology and internet was perceived differently depending on age and area of residence. Most participants reported that digital tools and internet connectivity had many benefits but still could not solve all the problems; moreover, these same digital tools and network transmission could lead to problems such as information security and digital divide concerns. This study also emphasizes the significant impact of human behavior and thinking on shaping the design of health care interventions and technologies. Understanding user perspectives and experiences is crucial for developing effective solutions for unmet needs. CONCLUSIONS: The results of this study indicate that despite the different perspectives of patients and health care professionals, their considerations of the key issues are very similar. Therefore, the implementation of plans related to telemedicine diagnosis, treatment, or rehabilitation should take the suggestions and considerations of both parties into account as crucial factors for telehealth care design.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Telemedicina , Humanos , Estudos de Viabilidade , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Pesquisa Qualitativa
14.
J Mater Chem B ; 12(15): 3741-3750, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38530281

RESUMO

Oncolytic virus ablation of tumor cells has the advantages of high tumor selectivity, strong immunogenicity, and low side effects. However, the recognition and clearance of oncolytic viruses by the immune system are the main factors limiting their anti-tumor efficiency. As a highly biosafe and highly modifiable oncolytic virus vector, acrylamide can improve the long-term circulation of oncolytic viruses. Still, it is limited in its uptake efficiency by tumor cells. Herein, we constructed an N-hydroxymethyl acrylamide-b-(N-3-aminopropyl methacrylamide)-b-DMC block copolymer (NMA-b-APMA-b-DMA, NAD) as an oncolytic virus carrier, which not only improves the long-term circulation of oncolytic viruses in the body but also shows excellent stability for loading an oncolytic virus. The data shows that there was no obvious difference in the transfection effect of the NAD/Ad complex with or without neutralizing antibodies in the medium, which meant that the cationic carrier mediated by NAD/Ad had good serum stability. Only 10 micrograms of NAD carrier are needed to load the oncolytic virus, which can increase the transfection efficiency by 50 times. Cell experiments and mouse animal experiments show that NAD vectors can significantly enhance the anti-tumor effect of oncolytic viruses. We hope that this work will promote the application of acrylamide as an oncolytic virus vector and provide new ideas for methods to modify acrylamide for biomedical applications.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Camundongos , Metionina , Acrilamida , Polímeros , NAD , Acrilamidas , Neoplasias/tratamento farmacológico , Racemetionina
15.
J Colloid Interface Sci ; 664: 681-690, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492369

RESUMO

Hard carbon (HC) has emerged as a highly promising anode material for sodium ion batteries, drawing tremendous interest in producing this material with low-cost and easily accessible precursors. The determination of the crucial parameters of precursors influencing the formation of key structures, such as closed pores, in the HC is of paramount importance. Considering the potential role of free radicals in the structural evolution of the precursors, we, for the first time, delve into the impact of radical species on the development of closed pores by electron paramagnetic resonance spectroscopy, with petroleum asphalt as the model system. Our findings reveal that carbon centred radicals, with the g value close to that of the free electron (2.0023), exhibit a propensity to form long-range, well-ordered graphitic structures with lower sodium storage capacity. Conversely, the deliberately incorporated oxygen radicals with the g value over 2.005 require a higher energy for ordering the graphitic structures, leading to the creation of closed pores. As a result, the optimal sample showcases a four-fold increase in plateau capacity for sodium ion storage due to the pore filling process. Our research underscores the pivotal role of employing electron paramagnetic resonance spectroscopy studying the critical structural evolution of functional carbon materials.

16.
ChemSusChem ; : e202400153, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436523

RESUMO

Aliphatic-aromatic copolyesters offer a promising solution to mitigate plastic pollution, but high content of aliphatic units (>40 %) often suffer from diminished comprehensive performances. Poly(butylene oxalate-co-furandicarboxylate) (PBOF) copolyesters were synthesized by precisely controlling the oxalic acid content from 10 % to 60 %. Compared with commercial PBAT, the barrier properties of PBOF for H2O and O2 increased by more than 6 and 26 times, respectively. The introduction of the oxalic acid units allowed the water contact angle to be reduced from 82.5° to 62.9°. Superior hydrophilicity gave PBOF an excellent degradation performance within a 35-day hydrolysis. Interestingly, PBO20F and PBO30F also displayed obvious decrease of molecular weight during hydrolysis, with elastic modulus >1 GPa and tensile strength between 35-54 MPa. PBOF achieved the highest hydrolysis rates among the reported PBF-based copolyesters. The hydrolytic mechanism was further explored based on Fukui function analysis and density functional theory (DFT) calculation. Noncovalent analysis indicated that the water molecules formed hydrogen bonding interaction with adjacent ester groups and thus improved the reactivity of carbonyl carbon. PBOF not only meet the requirements of the high-performance packaging market but can quickly degrade after the end of their usage cycles, providing a new choice for green and environmental protection.

17.
Cancer Lett ; 589: 216834, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537773

RESUMO

Glioblastoma (GBM), the deadliest central nervous system cancer, presents a poor prognosis and scant therapeutic options. Our research spotlights OH2, an oncolytic viral therapy derived from herpes simplex virus 2 (HSV-2), which demonstrates substantial antitumor activity and favorable tolerance in GBM. The extraordinary efficacy of OH2 emanates from its unique mechanisms: it selectively targets tumor cells replication, powerfully induces cytotoxic DNA damage stress, and kindles anti-tumor immune responses. Through single-cell RNA sequencing analysis, we discovered that OH2 not only curtails the proliferation of cancer cells and tumor-associated macrophages (TAM)-M2 but also bolsters the infiltration of macrophages, CD4+ and CD8+ T cells. Further investigation into molecular characteristics affecting OH2 sensitivity revealed potential influencers such as TTN, HMCN2 or IRS4 mutations, CDKN2A/B deletion and IDO1 amplification. This study marks the first demonstration of an HSV-2 derived OV's effectiveness against GBM. Significantly, these discoveries have driven the initiation of a phase I/II clinical trial (ClinicalTrials.gov: NCT05235074). This trial is designed to explore the potential of OH2 as a therapeutic option for patients with recurrent central nervous system tumors following surgical intervention.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/genética , Glioblastoma/genética , Glioblastoma/terapia , Linfócitos T CD8-Positivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia
18.
Carbohydr Polym ; 332: 121851, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431425

RESUMO

Cuprous oxide (Cu2O) is proven as an excellent anti-harmful microbial material. However, the liquid and vapor pha5se preparation methods reported so far hardly make pure Cu2O-containing composites and suffer environmental issues caused by chemical reducing agents with multiple processing steps. This work develops a facile one-pot solid-state sintering method to synthesize Cu2O/microcrystalline cellulose (MCC) composite via the thermal decomposition and oxidation-reduction reactions where copper formate was reduced by MCC. The Cu2O/MCC composite exhibits superior purity, dispersibility, stability, high yield, and high efficacy of antibacterial and antiviral properties, e.g., against E. coli, S. aureus, and Equine Arteritis Viral. This work utilizes elegantly the strong reducing capability of cellulose to develop an environmentally benign method to prepare high-purity Cu2O-polymer composites with low cytotoxicity and cost, which can be incorporated readily into other substrate materials to form various forms of anti-harmful microbial materials widely used in public health care products. In addition, the preparation of Cu2O-containing composites based on the reducing capability of cellulose is also expected to be applied to other cellulose-based materials for the loading of Cu2O particles.

19.
J Zhejiang Univ Sci B ; 25(3): 197-211, 2024 Mar 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38453635

RESUMO

Osteoarthritis (OA), characterized by cartilage degeneration, synovial inflammation, and subchondral bone remodeling, is among the most common musculoskeletal disorders globally in people over 60 years of age. The initiation and progression of OA involves the abnormal metabolism of chondrocytes as an important pathogenic process. Cartilage degeneration features mitochondrial dysfunction as one of the important causative factors of abnormal chondrocyte metabolism. Therefore, maintaining mitochondrial homeostasis is an important strategy to mitigate OA. Mitophagy is a vital process for autophagosomes to target, engulf, and remove damaged and dysfunctional mitochondria, thereby maintaining mitochondrial homeostasis. Cumulative studies have revealed a strong association between mitophagy and OA, suggesting that the regulation of mitophagy may be a novel therapeutic direction for OA. By reviewing the literature on mitophagy and OA published in recent years, this paper elaborates the potential mechanism of mitophagy regulating OA, thus providing a theoretical basis for studies related to mitophagy to develop new treatment options for OA.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Pessoa de Meia-Idade , Idoso , Mitofagia , Inflamação/metabolismo , Condrócitos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia
20.
J Zhejiang Univ Sci B ; 25(3): 212-232, 2024 Mar 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38453636

RESUMO

The endoplasmic reticulum is a key site for protein production and quality control. More than one-third of proteins are synthesized and folded into the correct three-dimensional conformation in the endoplasmic reticulum. However, during protein folding, unfolded and/or misfolded proteins are prone to occur, which may lead to endoplasmic reticulum stress. Organisms can monitor the quality of the proteins produced by endoplasmic reticulum quality control (ERQC) and endoplasmic reticulum-associated degradation (ERAD), which maintain endoplasmic reticulum protein homeostasis by degrading abnormally folded proteins. The underlying mechanisms of protein folding and ERAD in mammals have not yet been fully explored. Therefore, this paper reviews the process and function of protein folding and ERAD in mammalian cells, in order to help clinicians better understand the mechanism of ERAD and to provide a scientific reference for the treatment of diseases caused by abnormal ERAD.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Dobramento de Proteína , Animais , Proteínas , Estresse do Retículo Endoplasmático , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...