Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Anim Biotechnol ; 35(1): 2344210, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38785376

RESUMO

The PPARGC1A gene plays a fundamental role in regulating cellular energy metabolism, including adaptive thermogenesis, mitochondrial biogenesis, adipogenesis, gluconeogenesis, and glucose/fatty acid metabolism. In a previous study, our group investigated seven SNPs in Mediterranean buffalo associated with milk production traits, and the current study builds on this research by exploring the regulatory influences of the PPARGC1A gene in buffalo mammary epithelial cells (BuMECs). Our findings revealed that knockdown of PPARGC1A gene expression significantly affected the growth of BuMECs, including proliferation, cell cycle, and apoptosis. Additionally, we observed downregulated triglyceride secretion after PPARGC1A knockdown. Furthermore, the critical genes related to milk production, including the STATS, BAD, P53, SREBF1, and XDH genes were upregulated after RNAi, while the FABP3 gene, was downregulated. Moreover, Silencing the PPARGC1A gene led to a significant downregulation of ß-casein synthesis in BuMECs. Our study provides evidence of the importance of the PPARGC1A gene in regulating cell growth, lipid, and protein metabolism in the buffalo mammary gland. In light of our previous research, the current study underscores the potential of this gene for improving milk production efficiency and overall dairy productivity in buffalo populations.


Assuntos
Búfalos , Células Epiteliais , Glândulas Mamárias Animais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Animais , Búfalos/genética , Células Epiteliais/metabolismo , Feminino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Leite , Regulação da Expressão Gênica , Lactação/genética , Proliferação de Células/genética , Técnicas de Silenciamento de Genes , Apoptose/genética
2.
Vet Rec ; 193(11): e3560, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-37899290

RESUMO

BACKGROUND: Milk produced by dairy cows is a complex combination of many components, but the effect of mastitis has only been investigated for a few of these components. Milk mid-infrared (MIR) spectra can reflect the global composition of milk, and this study aimed to detect the relationships between milk MIR spectral wavenumbers and milk somatic cell count (SCC)-a sensitive biomarker for mastitis. METHODS: Pearson correlation analysis was used to calculate the correlation coefficient between somatic count score (SCS) and spectral wavenumbers. A general linear mixed model was applied to investigate the effect of three different classes of SCC (low, middle and high) on spectral wavenumbers. RESULTS: The mean correlation coefficient between the 'fingerprint region' (wavenumbers 925-1582 cm-1 ) and the SCS was higher than that for other regions of the MIR spectrum, and the specific wavenumber with the strongest correlation with the SCS was within the 'fingerprint region'. SCC class had a significant (p < 0.05) effect on 639 spectral wavenumbers. In particular, some spectral wavenumbers within the 'fingerprint region' were highly affected by the SCC class. LIMITATION: The data were collected from only one province in China, so the generalisability of the findings may be limited. CONCLUSION: SCC had close relationships with milk spectral wavenumbers related to important milk components or chemical bonds.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Feminino , Bovinos , Animais , Leite/química , Lactação , Contagem de Células/veterinária , Modelos Lineares , Mastite Bovina/diagnóstico
3.
Cell Death Dis ; 14(4): 239, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37015904

RESUMO

Female subfertility is an increasing reproductive issue worldwide, which is partially related to abnormal ovarian follicular development. Granulosa cells (GCs), by providing the necessary physical support and microenvironment for follicular development, play critical roles in maintaining female fertility. We previously showed that ectopic expression of four and a half LIM domains 2 (FHL2) promoted ovarian granulosa cell tumor progression. However, its function in follicular development and fertility remains unknown. Here, we confirmed that FHL2 is highly expressed in human and mouse ovaries. FHL2 immunosignals were predominantly expressed in ovarian GCs. A Fhl2 knockout (KO) mouse model was generated to examine its roles in follicular development and fertility. Compared with wildtype, knockout of Fhl2 significantly decreased female litter size and offspring number. Furthermore, Fhl2 deficiency reduced ovarian size and impaired follicular development. RNA-sequencing analysis of GCs isolated from either KO or WT mice revealed that, Fhl2 deletion impaired multiple biological functions and signaling pathways, such as Ovarian Putative Early Atresia Granulosa Cell, ErbB, Hippo/YAP, etc. In vitro studies confirmed that FHL2 silencing suppressed GCs growth and EGF-induced GCs proliferation, while its overexpression promoted GC proliferation and decreased apoptosis. Mechanistic studies indicated that FHL2, via forming complexes with transcriptional factors AP-1 or NF-κB, regulated Egf and Egfr expression, respectively. Besides, FHL2 depletion decreased YAP1 expression, especially the active form of YAP1 (nuclear YAP1) in GCs of growing follicles. EGF, serving as an autocrine/paracrine factor, not only induced FHL2 expression and nuclear accumulation, but also stimulated YAP1 expression and activation. Collectively, our study suggests that FHL2 interacts with EGFR and Hippo/YAP signaling to regulate follicular development and maintain fertility. This study illuminates a novel mechanism for follicular development and a potential therapeutic target to address subfertility.


Assuntos
Fator de Crescimento Epidérmico , Células da Granulosa , Feminino , Humanos , Camundongos , Animais , Fator de Crescimento Epidérmico/metabolismo , Células da Granulosa/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Fator de Transcrição AP-1/metabolismo , Fertilidade , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo
4.
Anim Reprod Sci ; 251: 107224, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37003063

RESUMO

Optimized reproduction management enhances fertility of dairy cows, and thus improves their milk production efficiency. Comparing different synchronization protocols under variable ambient conditions would be conducive to protocol selection and production efficiency improvement. Here, 9538 primiparous Holstein lactating cows were enrolled to either Double-Ovsynch (DO) or Presynch-Ovsynch (PO) to determine the outcomes under different ambiences. We found that averaged THI of 21-days before the first service (THI-b) was the best indicators in a total of 12 environmental indexes to explain changes in conception rate. And the conception rate decreased linearly in DO treated cows when THI-b was over 73, whereas the threshold was 64 in cows subjected to PO. Compared with PO treated cows, DO increased conception rate by 6%, 13% and 19%, when THI-b was lower than 64, from 64 to 73, and over 73, respectively. Furthermore, employing treatment of PO would lead greater risk for cows staying open compared with DO when THI-b below 64 (hazard ratio, 1.3) and over 73 (hazard ratio, 1.4). Most importantly, calving intervals were 15 days shorter in DO treated cows compared PO when THI-b over 73, while no difference was detected when THI-b below 64. In conclusion, our results supported that, fertility of primiparous Holstein cows could be improved by employing DO, especially in hot weather (THI-b ≥ 73), and the benefits of DO protocol were abated under cool conditions (THI-b < 64). Considering the impacts of environmental heat load is necessary to determine reproductive protocols for commercial dairy farm.


Assuntos
Sincronização do Estro , Lactação , Feminino , Bovinos , Animais , Sincronização do Estro/métodos , Temperatura Alta , Inseminação Artificial/veterinária , Inseminação Artificial/métodos , Reprodução , Dinoprosta , Hormônio Liberador de Gonadotropina , Progesterona
5.
J Agric Food Chem ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36780201

RESUMO

Cattle and buffalo served as the first and second largest dairy animals, respectively, providing 96% milk products worldwide. Understanding the mechanisms underlying milk synthesis is critical to develop the technique to improve milk production. Thiolases, also known as acetyl-coenzyme A acetyltransferases (ACAT), are an enzyme family that plays vital roles in lipid metabolism, including ACAT1, ACAT2, ACAA1, ACAA2, and HADHB. Our present study showed that these five members were orthologous in six livestock species including buffalo and cattle. Transcriptomic data analyses derived from different lactations stages showed that ACAA1 displayed different expression patterns between buffalo and cattle. Immunohistochemistry staining revealed that ACAA1 were dominantly located in the mammary epithelial cells of these two dairy animals. Knockdown of ACAA1 inhibited mammary epithelial cell proliferation and triglyceride and ß-casein secretion by regulating related gene expressions in cattle and buffalo. In contrast, ACAA1 overexpression promoted cell proliferation and triglyceride secretion. Finally, three novel SNPs (g.-681A>T, g.-23117C>T, and g.-24348G>T) were detected and showed significant association with milk production traits of Mediterranean buffaloes. In addition, g.-681A>T mutation located in the promoter region changed transcriptional activity significantly. Our findings suggested that ACAA1 play a key role in regulating buffalo and cattle milk synthesis and provided basic information to further understand the dairy animal lactation physiology.

6.
Anim Genet ; 54(2): 199-206, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36683294

RESUMO

As an important source of genomic variation, copy number variation (CNV) contributes to environmental adaptation in worldwide buffaloes. Despite this importance, CNV divergence between swamp buffaloes and river buffaloes has not been studied previously. Here, we report 21 152 CNV regions (CNVRs) in 141 buffaloes of 20 breeds detected through multiple CNV calling strategies. Only 248 CNVRs were shared between river buffalo and swamp buffalo, reflecting great variation of CNVRs between the two subspecies. Population structure analysis based on CNVs successfully separated the two buffalo subspecies. We further assessed CNV divergence by calculating FST for genome-wide CNVs. Totally, we identified 110 significantly divergent CNV segments and 44 putatively selected genes between river buffaloes and swamp buffaloes. In particular, LALBA, a key gene controlling milk production in cattle, presented a highly differentiated CNV in the promoter region, which makes it a strong functional candidate gene for differences between swamp buffaloes and river buffaloes in traits related to milk production. Our study provides useful information of CNVs in buffaloes, which may help explain the genetic differences between the two subspecies.


Assuntos
Bison , Búfalos , Variações do Número de Cópias de DNA , Animais , Bovinos , Bison/genética , Búfalos/genética , Genoma , Fenótipo
7.
Chem Biol Interact ; 368: 110192, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174739

RESUMO

As a major public health achievement, disinfection of drinking water significantly decreases outbreaks of waterborne disease, but produces drinking water disinfection by-products (DBPs) unfortunately. The haloacetic acids (HAAs) including bromoacetic acid (BAA), the second major class of DBPs, are considered as a global public health concern. BAA has been identified as cytotoxic, genotoxic, mutagenic, carcinogenic, and teratogenic in somatic cells. However, the toxic effects of BAA on oocyte maturation remain obscure. Herein, we documented that exposure to BAA compromised mouse oocyte maturation in vitro, causing blocked polar body extrusion (PBE). Meiotic progression analysis demonstrated that exposure to BAA induced the activated spindle assembly checkpoint (SAC) mediated metaphase I (MI) arrest in oocytes. Further study revealed that exposure to BAA resulted in the hyperacetylation of α-tubulin, disrupting spindle assembly and chromosome alignment, which is responsible for the activation of SAC. Besides, the organization of actin, the other major component of cytoskeleton in oocytes, was disturbed after BAA exposure. In addition, exposure to BAA altered the status of histone H3 methylation and 5 mC, indicative of the damaged epigenetic modifications. Moreover, we found that exposure to BAA induced DNA damage in a dose-dependent manner in oocytes. Collectively, our study evidenced that exposure to BAA intervened mouse oocyte maturation via disrupting cytoskeletal dynamics, damaging epigenetic modifications and inducing accumulation of DNA damage.


Assuntos
Água Potável , Técnicas de Maturação in Vitro de Oócitos , Camundongos , Animais , Microtúbulos , Epigênese Genética
8.
Genes (Basel) ; 13(8)2022 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-36011355

RESUMO

(1) Background: Adipogenesis is an important issue in human health and livestock meat quality that has received widespread attention and extensive study. However, alternative splicing events may generate multiple isoforms with different functions. This will lead to known knowledge being far more complex than before. (2) Methods: We studied the effects of two different TUSC5 isoforms (TUSC5A and TUSC5B) in cattle on adipogenesis by constructing over-expression cell models and RNA-sequencing methods. (3) Results: We discovered that over-expression of TUSC5A promotes the process of adipogenesis while over-expression of TUSC5B suppresses it. Eight important genes (PPARG, ACC1, FASN, SCD1, LPL, FABP4, GPDH, and GLUT4) during adipogenesis were significantly promoted (student's t-test, p < 0.05) by TUSC5A and suppressed by TUSC5B both before and after cell differentiation. By performing a comprehensive analysis using a RNA-seq strategy, we found that both up-regulated differentially expressed genes (DEGs, |log2FoldChange| ≥ 1, p ≤ 0.05) of TUSC5A and down-regulated DEGs of TUSC5B were significantly enriched in the adipogenesis related GO terms, and the PPAR signaling pathway may play important role in those differences. (4) Conclusions: Our study proved that over-expression of two TUSC5 isoforms would regulate adipogenesis in the opposite direction. It is important to understand the function of the TUSC5 gene correctly.


Assuntos
Adipócitos , Adipogenia , Proteínas de Membrana/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adipócitos/metabolismo , Adipogenia/genética , Animais , Bovinos/genética , Diferenciação Celular/genética , Humanos , PPAR gama/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
9.
Front Genet ; 13: 896910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734439

RESUMO

Understanding the genetic mechanisms underlying milk production traits contribute to improving the production potential of dairy animals. Long-chain acyl-CoA synthetase 1 (ACSL1) plays a key role in fatty acid metabolism and was highly expressed in the lactating mammary gland epithelial cells (MGECs). The objectives of the present study were to detect the polymorphisms within ACSL1 in Mediterranean buffalo, the genetic effects of these mutations on milk production traits, and understand the gene regulatory effects on MGECs. A total of twelve SNPs were identified by sequencing, including nine SNPs in the intronic region and three in the exonic region. Association analysis showed that nine SNPs were associated with one or more traits. Two haplotype blocks were identified, and among these haplotypes, the individuals carrying the H2H2 haplotype in block 1 and H5H1 in block 2 were superior to those of other haplotypes in milk production traits. Immunohistological staining of ACSL1 in buffalo mammary gland tissue indicated its expression and localization in MGECs. Knockdown of ACSL1 inhibited cell growth, diminished MGEC lipid synthesis and triglyceride secretion, and downregulated CCND1, PPARγ, and FABP3 expression. The overexpression of ACSL1 promoted cell growth, enhanced the triglyceride secretion, and upregulated CCND1, PPARγ, SREBP1, and FABP3. ACSL1 was also involved in milk protein regulation as indicated by the decreased or increased ß-casein concentration and CSN3 expression in the knockdown or overexpression group, respectively. In summary, our present study depicted that ACSL1 mutations were associated with buffalo milk production performance. This may be related to its positive regulation roles on MGEC growth, milk fat, and milk protein synthesis. The current study showed the potential of the ACSL1 gene as a candidate for milk production traits and provides a new understanding of the physiological mechanisms underlying milk production regulation.

10.
Animals (Basel) ; 12(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35565637

RESUMO

The follicular dynamics is used as a reliable indicator for reproductive management in livestock. However, the follicular dynamics (follicle wave emergence, estrus cycle length, diameter of dominant follicle, follicular growth and atretic phases) during the estrous cycle of crossbred (Nili Ravi-Jianghan) buffalo is still unexplored. Therefore, the present study aimed to observe the follicular dynamics in estrous cycle of crossbred buffaloes at different physiological stages (pubertal; n = 28, sexual mature; n = 22 and postpartum; n = 18). In the present study, the follicular dynamics were ultrasonically examined at 12 h intervals throughout an estrous cycle during the breeding season. The results indicate that about 86.76% (59/68) crossbred buffaloes, irrespective of physiological stage, exhibited two follicular waves in estrous cycle with an average estrus cycle length was 20.7 ± 0.4 days. The estrus cycle length was significantly shorter (p < 0.05) in pubertal buffaloes (19.4 ± 0.4 days) compared with sexual mature (21.5 ± 0.3 days) and postpartum (21.9 ± 0.4 days) buffaloes. The first follicular wave emerged on same day during one- (pubertal vs. postpartum), two- (pubertal vs. mature vs. postpartum) or three-wave (mature vs. postpartum) estrous cycle buffaloes. The maximum diameter of dominant follicle (DF) in pubertal, sexually mature and postpartum crossbred buffaloes was 9.6 ± 2.0 mm, 10.6 ± 0.5 mm and 12.6 ± 0.7 mm with growth rate of 1.08 ± 0.04 mm/day, 0.92 ± 0.04 mm/day, and 0.9 ± 0.07 mm/day, respectively. In conclusion, similar to other buffalo breeds, Nili Ravi-Jianghan crossbred buffaloes showed the two-wave follicular pattern dominantly with an average duration of ~20 days estrous cycle. The observed follicular dynamics can be used as a reliable indicator for synchronization and fixed-time artificial insemination (FTAI) programs to improve the fertility of crossbred buffaloes.

11.
Endocr Rev ; 43(6): 1074-1096, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-35596657

RESUMO

Emerging studies indicate that the Hippo pathway, a highly conserved pathway that regulates organ size control, plays an important role in governing ovarian physiology, fertility, and pathology. Specific to the ovary, the spatiotemporal expression of the major components of the Hippo signaling cascade are observed throughout the reproductive lifespan. Observations from multiple species begin to elucidate the functional diversity and molecular mechanisms of Hippo signaling in the ovary in addition to the identification of interactions with other signaling pathways and responses to various external stimuli. Hippo pathway components play important roles in follicle growth and activation, as well as steroidogenesis, by regulating several key biological processes through mechanisms of cell proliferation, migration, differentiation, and cell fate determination. Given the importance of these processes, dysregulation of the Hippo pathway contributes to loss of follicular homeostasis and reproductive disorders such as polycystic ovary syndrome (PCOS), premature ovarian insufficiency, and ovarian cancers. This review highlights what is currently known about the Hippo pathway core components in ovarian physiology, including ovarian development, follicle development, and oocyte maturation, while identifying areas for future research to better understand Hippo signaling as a multifunctional pathway in reproductive health and biology.


Assuntos
Via de Sinalização Hippo , Insuficiência Ovariana Primária , Feminino , Humanos , Folículo Ovariano/fisiologia , Fertilidade
12.
Ecotoxicol Environ Saf ; 234: 113393, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35278989

RESUMO

Zinc Pyrithione (ZPT), a Food and Drug Administration (FDA) approved chemical, is widely used for topical antimicrobials and cosmetic consumer products, including anti-dandruff shampoos. ZPT and its degraded byproducts have detected in large quantities in the environment, and identified to pose healthy risks on aquatic organisms and human. However, so far, knowledge about ZPT effects on female reproduction, particularly oocyte maturation and quality, is limited. Herein, we investigated the adverse impact of ZPT on mouse oocyte maturation and quality in vitro and found exposure to ZPT significantly compromises oocyte maturation. The results revealed that ZPT disturbed the meiotic cell cycle by impairing cytoskeletal dynamics, kinetochore-microtubule attachment (K-MT), and causing spindle assembly checkpoints (SAC) continuous activation. Further, we observed the microtubule-organizing centers (MTOCs) associated proteins p-MAPK and Aurora-A were disrupted in ZPT-treated oocytes, signified by decreased expression and abnormal localization, responsible for the severe cytoskeletal defects. In addition, ZPT exposure induced a significant increase in the levels of H3K9me2, H3K9me3, H3K27me1, and H3K27me3, suggesting the alterations of epigenetic modifications. Moreover, the accumulation of zinc ions (Zn2+) was observed in ZPT-treated oocytes, which was detrimental because overmuch intracellular Zn2+ disrupted oocyte meiosis. Finally, these above alterations impaired spindle organization and chromosome alignment in metaphase-II (MII) oocytes, indicative of damaged oocytes quality. In conclusion, ZPT exposure influenced oocyte maturation and quality via involvement in MTOCs-associated proteins mediated spindle defects, altered epigenetic modifications and zinc accumulation.

13.
Animals (Basel) ; 12(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35327194

RESUMO

The present study investigates the effect of Capsicum oleoresin (CAP) supplementation on the dry matter intake, milk performance, plasma metabolites, and nutrient digestibility of dairy cows during the summer. Thirty-two lactating Holstein dairy cows (n = 32) were randomly divided into four groups. The CAP was dissolved in water and added to the total mixed ration with graded levels of CAP (0, 20, 40, and 80 mg/kg of dry matter). The trial period consisted of seven days for adaptation and thirty days for sampling. Data were analyzed using the MIXED and GLM procedure SAS. The linear and quadratic effects were tested. The milk yield, milk fat, and milk urea nitrogen increased linearly with the dietary addition of CAP (p < 0.05). The dry matter intake increased linearly in the 20CAP group (p < 0.05). Additionally, the 4% fat-corrected milk, energy-corrected milk, milk fat yield, and milk fat to milk protein ratio increased quadratically (p < 0.05), while the rectal temperature decreased quadratically (p < 0.05). Serum total cholesterol and non-esterified fatty acids increased linearly (p < 0.05); glucose and ß-hydroxybutyrate tended to increase quadratically with the dietary addition of CAP (p = 0.05). Meanwhile, CAP supplementation did not affect the milk protein yield, blood concentration of triglyceride, insulin, lipopolysaccharide, immunoglobulin G, or heat shock protein 70 expression level (p > 0.05). In addition, nutrient digestibility was comparable among groups (p > 0.05). These findings indicated that CAP supplementation could enhance the lactation performance of dairy cows during the summer.

14.
Reprod Toxicol ; 110: 49-59, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35346789

RESUMO

Perfluorooctanoic acid (PFOA) is a common environmental contaminant that belongs to a group of manmade fluorinated chemicals called per- and polyfluoroalkyl substances (PFAS). Due to the pervasive nature of PFOA, the environmental health risks of PFOA contamination and exposure on reproductive health have increasing concern. In the present study, we exposed HGrC1 cells, an immortalized human granulosa cell line, to environmentally relevant (1-10 µM) concentrations of PFOA. Results indicated that HGrC1 cells treated with PFOA had increased proliferation and migration relative to vehicle treated controls. No differences in cell apoptosis were observed with 1-10 µM PFOA. Gene expression analysis revealed increases in mRNA transcripts for cell cycle regulators CCND1, CCNA2, and CCNB1. Upregulation of YAP1 protein and downstream target CTGF protein was also observed, suggesting that the Hippo pathway is involved in the proliferation and migratory effects of PFOA on HGrC1 cells. Further, the YAP1 inhibitor Verteporfin prevented the stimulatory effects of PFOA on HGrC1 cells. Together, these findings support a role for the Hippo pathway effector YAP1 in response to PFOA exposure in human granulosa cells.


Assuntos
Fluorocarbonos , Caprilatos/farmacologia , Proliferação de Células , Feminino , Fluorocarbonos/farmacologia , Genes cdc , Células da Granulosa/metabolismo , Via de Sinalização Hippo , Humanos , Proteínas de Sinalização YAP
15.
Animals (Basel) ; 12(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35203122

RESUMO

The present study was conducted to examine the effect of conventional the Ovsynch protocol (OVS) and a modified Ovsynch synchronization (GPGMH) protocol on the follicular dynamics, estrus, ovulation, and pregnancy in nulliparous and multiparous crossbred (swamp × riverine) buffaloes during different seasons. GPGMH or OVS protocols were used to synchronize nulliparous (n = 128; GPGMH = 94, OVS = 34) and multiparous (n = 154; GPGMH = 122, OVS = 32) buffaloes during the peak (n = 186; GPGMH = 143, OVS = 43) and low breeding (n = 96; GPGMH = 73, OVS = 23) seasons. Buffaloes were monitored for follicular dynamics, estrus response, ovulation, and pregnancy rates. The results showed that protocol, parity, and season had significant effects on estrus, ovulation, and pregnancy variables, and interactions among parity and protocol, season and protocol, and season and parity were observed for few of reproductive indices in the crossbred buffaloes. There were no significant (p > 0.05) interaction for protocol, parity and season. In multiparous buffaloes, the application of the GPGMH protocol significantly (p < 0.05) increased the interaction to the interval to estrus onset after the second GnRH, estrus response, ovulation rate, and pregnancy rate, and lowered (p < 0.05) the silent estrus when compared with the conventional OVS protocol. During the peak breeding season, the application of the GPGMH protocol significantly (p < 0.05) improved the interaction to the estrus response, ovulation rate, and pregnancy rate, while it lowered (p < 0.05) the silent estrus incidence when compared to the conventional OVS protocol. In conclusion, the GPGMH protocol, in comparison to the OVS protocol, improves the follicular dynamics, estrus response, ovulation, and pregnancy rates in crossbred multiparous buffaloes during the peak breeding seasons.

16.
Nat Commun ; 13(1): 823, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145088

RESUMO

Buffalo is an important livestock species. Here, we present a comprehensive metagenomic survey of the microbial communities along the buffalo digestive tract. We analysed 695 samples covering eight different sites in three compartments (four-chambered stomach, intestine, and rectum). We mapped ~85% of the raw sequence reads to 4,960 strain-level metagenome-assembled genomes (MAGs) and 3,255 species-level MAGs, 90% of which appear to correspond to new species. In addition, we annotated over 5.8 million nonredundant proteins from the MAGs. In comparison with the rumen microbiome of cattle, the buffalo microbiota seems to present greater potential for fibre degradation and less potential for methane production. Our catalogue of microbial genomes and the encoded proteins provides insights into microbial functions and interactions at distinct sites along the buffalo digestive tract.


Assuntos
Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Metagenoma , Animais , Bactérias/genética , Bovinos , DNA Bacteriano , Fibras na Dieta/metabolismo , Fezes/microbiologia , Feminino , Genoma Microbiano , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Metagenômica , Filogenia , RNA Ribossômico 16S/genética , Rúmen/microbiologia
17.
Environ Toxicol ; 37(6): 1413-1422, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35218298

RESUMO

Bisphenol F (BPF), a substitute for bisphenol A (BPA), is progressively used to manufacture various consumer products. Despite the established reproductive toxicity of BPF, the underlying mechanisms remain to elucidate. This in-vitro study deep in sighted the BPF toxicity on mouse oocyte meiotic maturation and quality. After treating oocytes with BPF (300 µM), the oocyte meiotic progression was blocked, accentuated by a reduced rate in the first polar body extrusion (PBE). Next, we illustrated that BPF induced α-tubulin hyper-acetylation disrupted the spindle assembly and chromosome alignment. Concurrently, BPF resulted in severe oxidative stress and DNA damage, which triggered the early apoptosis in mouse oocytes. Further, altered epigenetic modifications following BPF exposure were proved by increased H3K27me3 levels. Concerning the toxic effects on spindle structure, oxidative stress, and DNA damage in mouse oocytes, BPF toxicity was less severe to oocyte maturation and spindle structure than BPA and induced low oxidative stress. However, compared with BPA, oocytes treated with BPF were more prone to DNA damage, indicating not less intense or even more severe toxic effects of BPF than BPA on some aspects of oocytes maturation. In brief, the present study established that like wise to BPA, BPF could inhibit meiotic maturation and reduce oocyte quality, suggesting it is not a safe substitute for BPA.


Assuntos
Compostos Benzidrílicos , Técnicas de Maturação in Vitro de Oócitos , Animais , Compostos Benzidrílicos/metabolismo , Dano ao DNA , Camundongos , Oócitos , Estresse Oxidativo , Fenóis
18.
Int J Biochem Cell Biol ; 144: 106169, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35093571

RESUMO

WDR62 (WD40-repeat protein 62) participates in diverse biological process, especially mitotic spindle organization via regulating centriole biogenesis and the function of centriole-associated protein. However, the role of WDR62 exerts in spindle assembly and meiotic progression control in oocytes lacking typical centrosomes remains obscure. In a previous study, we reported that WDR62 is involved in spindle migration and asymmetric cytokinesis in mouse oocyte meiosis. In the current study, another novel function of WDR62 regulating cell cycle progression through meiotic spindle formation during oocyte meiotic maturation was found. Knockdown of WDR62 through siRNA microinjection disrupted the meiotic cell cycle and induced metaphase-I (MI) arrest coupled with severe spindle abnormality, chromosome misalignment, and aneuploid generation. Moreover, WDR62 depletion induced defective kinetochore-microtubule attachments (K-MT) and activated spindle assembly checkpoint (SAC), which could trigger the arrest of meiotic progression. Further study demonstrated that depletion of WDR62 was associated with an aberrant location of p-JNK and reduced its expression level; concomitantly, status of H3K9 trimethylation was also altered. In addition, phenotypes similar to WDR62 depletion were observed during the function-loss analysis of p-JNK using a specific inhibitor (SP600125), which signifies that WDR62 is important for spindle organization and meiotic progression, and this function might be via its regulation of p-JNK. In conclusion, this study revealed that WDR62 functions in multiple ways during oocyte meiotic maturation, which could be related to p-JNK and H3K9 trimethylation.


Assuntos
Meiose , Fuso Acromático , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , MAP Quinase Quinase 4/metabolismo , Metáfase , Metilação , Camundongos , Proteínas do Tecido Nervoso/genética , Oócitos/metabolismo , Fuso Acromático/genética
19.
Animals (Basel) ; 11(10)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34679952

RESUMO

Worldwide, silage is considered the main component in dairy animal diets; however, this portion is mainly dominated by corn silage, which raises availability challenges in some agricultural production systems. The present study evaluated a partial replacement of corn silage with forage rape silage (FRS) and its effect on feed intake, nutrient digestibility, rumen fermentation, milk production, and blood metabolites in buffalo. Thirty-six lactating buffaloes were randomly assigned to four different groups, according to supplementation of FRS (only corn silage, FRS0) or with 15% (FRS15), 25% (FRS25), and 35% (FRS35) of forage rape silage instead of corn silage. The results showed that, compared to corn silage, forage rape silage has a lower carbohydrate but a higher protein concentration. The buffalo intake of dry matter and organic matter were improved linearly with the FRS increasing in the diet. The apparent total-tract digestibility (ATTD) of dry matter, organic matter, nitrogen, neutral detergent fiber, and acid detergent fiber also increased by the FRS supplementation compared with FRS0. Conversely, FRS supplementation decreased the propionic, butyric, and valeric acid contents and increased the acetic:propionic ratio and microbial protein content. Furthermore, FRS inclusion led to a significantly higher milk urea and non-fat milk solid content, higher blood glucose, total globulins, blood urea nitrogen, and lower blood high-density lipoprotein. These results suggested that FRS has high a nutritional value and digestibility, is a good feed resource, and showed favorable effects when supplemented with dairy buffalo ration.

20.
Front Vet Sci ; 8: 646247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552970

RESUMO

The crossbreeding of Swamp and River type buffalo breeds is practiced for the improvement of milk yield and reproductive performance in swamp buffalo herds. This study aimed to modify the Ovsynch synchronization protocol (GPG) and improve the fixed-timed artificial insemination (FTAI) for better reproductive performance of crossbred buffaloes. Comparison of four conventional synchronization protocols [pregnant mare gonadotropin-prostaglandin F2α-gonadotropin-releasing hormone (PmPG), gonadotropin-releasing hormone-prostaglandin F2α-gonadotropin-releasing hormone (GPG), prostaglandin F2α-gonadotropin-releasing hormone-prostaglandin F2α-estradiol benzoate (PGPE), and progesterone-pregnant mare gonadotropin-prostaglandin F2α-gonadotropin-releasing hormone (P4PmPG)] in crossbred buffaloes showed that the GPG protocol treated buffaloes displayed higher (P < 0.05) estrus response with an increasing tendency in ovulation (84.6%) and pregnancy rates (30.8%) than PmPG, PGPE, and P4PmPG treated buffaloes. Buffaloes treated with a dose of 0.4 (mg/kg) mifepristone combined with GPG, exhibited higher (P < 0.05) estrous response (82.4%), ovulation (94.1%), and pregnancy (47.1%) rates compared with other doses (0, 0.3, or 0.5 mg/kg) groups. Injection of mifepristone along second GnRH injection in buffaloes improved (P < 0.05) pregnancy rate (35.3%) when compared to before or after the second GnRH of GPG protocol. Single AI after 24 h of mifepristone or second GnRH injection seems the best time to enhance the pregnancy rates in buffaloes compared to double or other single AI times in the modified GPGMH protocol. In comparison, GPGMH reduced the follicular cyst incidence (P < 0.05) with increasing ovulation (P > 0.05) and pregnancy rates (P > 0.05) than the P4GPG and GPG protocols in crossbred buffaloes. The current study supported that new synchronization protocol (modified of GPG protocol; GPGMH) by the inclusion of mifepristone (with a dose of 0.4 mg/kg along second GnRH), AI after 24 h of mifepristone or second GnRH, and human chorionic gonadotropin (hCG at day 5 of AI) enhance the ovulation and pregnancy rates in crossbred buffaloes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA