Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 7(1): 107, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724592

RESUMO

Modifications of complexes by attachment of anchor groups are widely used to control molecule-surface interactions. This is of importance for the fabrication of (catalytically active) hybrid systems, viz. of surface immobilized molecular catalysts. In this study, the complex fac-Re(S-Sbpy)(CO)3Cl (S-Sbpy = 3,3'-disulfide-2,2'-bipyridine), a sulfurated derivative of the prominent Re(bpy)(CO)3Cl class of CO2 reduction catalysts, was deposited onto the clean Ag(001) surface at room temperature. The complex is thermostable upon sublimation as supported by infrared absorption and nuclear magnetic resonance spectroscopy. Its anchoring process has been analyzed using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The growth behavior was directly contrasted to the one of the parent complex fac-Re(bpy)(CO)3Cl (bpy = 2,2'-bipyridine). The sulfurated complex nucleates as single molecule at different surface sites and at molecule clusters. In contrast, for the parent complex nucleation only occurs in clusters of several molecules at specifically oriented surface steps. While this shows that surface immobilization of the sulfurated complex is more efficient as compared to the parent, symmetry analysis of the STM topographic data supported by DFT calculations indicates that more than 90% of the complexes adsorb in a geometric configuration very similar to the one of the parent complex.

2.
J Am Chem Soc ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598687

RESUMO

We report a rhenium diimine photosensitizer equipped with a peripheral disulfide unit on one of the bipyridine ligands, [Re(CO)3(bpy)(S-Sbpy4,4)]+ (1+, bpy = 2,2'-bipyridine, S-Sbpy4,4 = [1,2]dithiino[3,4-c:6,5-c']dipyridine), showing anti-Kasha luminescence. Steady-state and ultrafast time-resolved spectroscopies complemented by nonadiabatic dynamics simulations are used to disclose its excited-state dynamics. The calculations show that after intersystem crossing the complex evolves to two different triplet minima: a (S-Sbpy4,4)-ligand-centered excited state (3LC) lying at lower energy and a metal-to-(bpy)-ligand charge transfer (3MLCT) state at higher energy, with relative yields of 90% and 10%, respectively. The 3LC state involves local excitation of the disulfide group into the antibonding σ* orbital, leading to significant elongation of the S-S bond. Intriguingly, it is the higher-lying 3MLCT state, which is assigned to display luminescence with a lifetime of 270 ns: a signature of anti-Kasha behavior. This assignment is consistent with an energy barrier ≥ 0.6 eV or negligible electronic coupling, preventing reaction toward the 3LC state after the population is trapped in the 3MLCT state. This study represents a striking example on how elusive excited-state dynamics of transition-metal photosensitizers can be deciphered by synergistic experiments and state-of-the-art calculations. Disulfide functionalization lays the foundation of a new design strategy toward harnessing excess energy in a system for possible bimolecular electron or energy transfer reactivity.

3.
Inorg Chem ; 61(35): 13944-13955, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36001121

RESUMO

Molecular systems combining light harvesting and charge storage are receiving great attention in the context of, for example, artificial photosynthesis and solar fuel generation. As part of ongoing efforts to develop new concepts for photoinduced proton-coupled electron transfer (PCET) reactivities, we report a cyclometallated iridium(III) complex [Ir(ppy)2(S-Sbpy)](PF6) ([1]PF6) equipped with our previously developed sulfurated bipyridine ligand S-Sbpy. A new one-step synthetic protocol for S-Sbpy is developed, starting from commercially available 2,2'-bipyridine, which significantly facilitates the use of this ligand. [1]+ features a two-electron reduction with potential inversion (|E1| > |E2|) at moderate potentials (E1 = -1.12, E2 = -1.11 V versus. Fc+/0 at 253 K), leading to a dithiolate species [1]-. Protonation with weak acids allows for determination of pKa = 23.5 in MeCN for the S-H···S- unit of [1H]. The driving forces for both the H atom and the hydride transfer are calculated to be ∼60 kcal mol-1 and verified experimentally by reaction with a suitable H atom and a hydride acceptor, demonstrating the ability of [1]+ to serve as a versatile PCET reagent, albeit with limited thermal stability. In MeCN solution, an orange emission for [1]PF6 from a triplet-excited state was found. Density functional calculations and ultrafast absorption spectroscopy are used to give insight into the excited-state dynamics of the complex and suggest a significantly stretched S-S bond for the lowest triplet-state T1. The structural responsiveness of the disulfide unit is proposed to open an effective relaxation channel toward the ground state, explaining the unexpectedly short lifetime of [1]+. These insights as well as the quantitative ground-state thermochemistry data provide valuable information for the use of S-Sbpy-functionalized complexes and their disulfide-/dithiol-directed PCET reactivity.


Assuntos
Compostos Heterocíclicos , Irídio , Dissulfetos , Irídio/química , Ligantes , Luminescência , Prótons
4.
J Am Chem Soc ; 143(16): 6238-6247, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33861085

RESUMO

The transfer of multiple electrons and protons is of crucial importance in many reactions relevant in biology and chemistry. Natural redox-active cofactors are capable of storing and releasing electrons and protons under relatively mild conditions and thus serve as blueprints for synthetic proton-coupled electron transfer (PCET) reagents. Inspired by the prominence of the 2e-/2H+ disulfide/dithiol couple in biology, we investigate herein the diverse PCET reactivity of a Re complex equipped with a bipyridine ligand featuring a unique SH···-S moiety in the backbone. The disulfide bond in fac-[Re(S-Sbpy)(CO)3Cl] (1, S-Sbpy = [1,2]dithiino[4,3-b:5,6-b']dipyridine) undergoes two successive reductions at equal potentials of -1.16 V vs Fc+|0 at room temperature forming [Re(S2bpy)(CO)3Cl]2- (12-, S2bpy = [2,2'-bipyridine]-3,3'-bis(thiolate)). 12- has two adjacent thiolate functions at the bpy periphery, which can be protonated forming the S-H···-S unit, 1H-. The disulfide/dithiol switch exhibits a rich PCET reactivity and can release a proton (ΔG°H+ = 34 kcal mol-1, pKa = 24.7), an H atom (ΔG°H• = 59 kcal mol-1), or a hydride ion (ΔG°H- = 60 kcal mol-1) as demonstrated in the reactivity with various organic test substrates.


Assuntos
Complexos de Coordenação/química , Dissulfetos/química , Rênio/química , Tolueno/análogos & derivados , Complexos de Coordenação/síntese química , Transporte de Elétrons , Hidrogênio/química , Cinética , Conformação Molecular , Oxirredução , Prótons , Termodinâmica , Tolueno/química
5.
Inorg Chem ; 60(3): 1672-1682, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33434007

RESUMO

The novel photosensitizer [Ru(S-Sbpy)(bpy)2]2+ harbors two distinct sets of excited states in the UV/Vis region of the absorption spectrum located on either bpy or S-Sbpy ligands. Here, we address the question of whether following excitation into these two types of states could lead to the formation of different long-lived excited states from where energy transfer to a reactive species could occur. Femtosecond transient absorption spectroscopy identifies the formation of the final state within 80 fs for both excitation wavelengths. The recorded spectra hint at very similar dynamics following excitation toward either the parent or sulfur-decorated bpy ligands, indicating ultrafast interconversion into a unique excited-state species regardless of the initial state. Non-adiabatic surface hopping dynamics simulations show that ultrafast spin-orbit-mediated mixing of the states within less than 50 fs strongly increases the localization of the excited electron at the S-Sbpy ligand. Extensive structural relaxation within this sulfurated ligand is possible, via S-S bond cleavage that results in triplet state energies that are lower than those in the analogue [Ru(bpy)3]2+. This structural relaxation upon localization of the charge on S-Sbpy is found to be the reason for the formation of a single long-lived species independent of the excitation wavelength.

6.
Inorg Chem ; 59(7): 4972-4984, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32142275

RESUMO

The development of new solar-to-fuel scenarios is of great importance, but the construction of molecular systems that convert sunlight into chemical energy represents a challenge. One specific issue is that the molecular systems have to be able to accumulate redox equivalents to mediate the photodriven transformation of relevant small molecules, which mostly involves the orchestrated transfer of multiple electrons and protons. Disulfide/dithiol interconversions are prominent 2e-/2H+ couples and can play an important role for redox control and charge storage. With this background in mind, a new photosensitizer [Ru(S-Sbpy)(bpy)2]2+ (12+) equipped with a disulfide functionalized bpy ligand (S-Sbpy, bpy = 2,2'-bipyridine) was synthesized and has been comprehensively studied, including structural characterization by X-ray diffraction. In-depth electrochemical studies show that the S-Sbpy ligand in 12+ can be reduced twice at moderate potentials (around -1.1 V vs Fc+/0), and simulation of the cyclic voltammetry (CV) traces revealed potential inversion (E2 > E1) and allowed to derive kinetic parameters for the sequential electron-transfer processes. However, reduction at room temperature also triggers the ejection of one sulfur atom from 12+, leading to the formation of [Ru(Sbpy)(bpy)2]2+(22+). This chemical reaction can be suppressed by decreasing the temperature from 298 to 248 K. Compared to the archetypical photosensitizer [Ru(bpy)3]2+, 12+ features an additional low energy optical excitation in the MLCT region, originating from charge transfer from the metal center to the S-Sbpy ligand (aka MSCT) according to time-dependent density functional theory (TD-DFT) calculations. Analysis of the excited states of 12+ on the basis of ground-state Wigner sampling and using charge-transfer descriptors has shown that bpy modification with a peripheral disulfide moiety leads to an energy splitting between charge-transfer excitations to the S-Sbpy and the bpy ligands, offering the possibility of selective charge transfer from the metal to either type of ligands. Compound 12+ is photostable and shows an emission from a 3MLCT state in deoxygenated acetonitrile with a lifetime of 109 ns. This work demonstrates a rationally designed system that enables future studies of photoinduced multielectron, multiproton PCET chemistry.

7.
Chemistry ; 24(45): 11649-11666, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-29889320

RESUMO

The heterotrimetallic complexes [FeMFe(dpa)4 Cl2 ] (M=Ni (1), Pd (2), and Pt (3); dpa- =dipyridylamido) featuring two high-spin iron centers linked by Group 10 metals were synthesized and their physical properties were investigated. Oxidation of 1-3 with suitable oxidants in CH2 Cl2 solution yielded the mixed-valent species [1]+/2+ -[3]+/2+ . The solution properties of [1]0/+/2+ -[3]0/+/2+ were characterized by 1 H NMR and UV/Vis/NIR spectroscopy as well as spectroelectrochemisty. The mixed-valent states of [1]+ -[3]+ obtained by electrochemical or chemical oxidation are classified as class II valence delocalization. The solid-state structures of 1-3, [1]+ , [3]+ , and [1]2+ were determined by single-crystal X-ray diffraction analysis, exhibiting a linear metal framework with an approximate D4 symmetry. The spin states and magnetic properties were studied by using SQUID magnetometry, EPR and Mössbauer spectroscopy, and DFT calculations. Antiferromagnetic interactions between terminal high-spin iron centers are present within [1]0/+/2+ -[3]0/+/2+ and the |J| values increase with the central metal ion changing from Ni to Pt. The DFT calculations reproduce the antiferromagnetic coupling and ascribe it to a σ-type exchange pathway. The substitution of the central metal not only influences the spin-spin interactions but also the degree of electronic delocalization between the terminal iron sites along the Fe-M-Fe chains.

8.
Dalton Trans ; 47(5): 1422-1434, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29292429

RESUMO

The CoRu2(dpa)4Cl2 (1) (dpa: 2,2'-dipyridylamide) is synthesized by the reaction of Ru2(OAc)4Cl and Co3(dpa)4Cl2. By mixing 1 with NH3, Co2+ can be removed and result in the formation of unique binuclear complex 4,0-Ru2(dpa)4Cl (2) featuring one coordination pocket supported by free pyridine groups. Hence, this complex can act as an outstanding precursor for the formation of heterotrimetallic chains with MRu2 cores. A series of M-Ru25+ complexes (M = Co2+ (3), Ag+ (4), Mn2+ (5), Fe2+ (6), Zn2+ (7), Cd2+ (8), Pd2+ (9), Rh2+ (10), and Ir2+ (11)) were prepared and isolated, representing the most complete series of heterotrimetallic chains to date. All these metal string complexes are in a linear trimetallic framework helically wrapped by four dpa- ligands, characterized by X-ray diffraction measurements. The bending of the trinuclear metal cores in RhRu2 (10) and IrRu2 (11) (∠Ru-Ru-Rh: 167.58° and ∠Ru-Ru-Ir: 167.61°) indicates that a heterometallic metal-metal bonds (Ru-Rh; Ru-Ir) are generated. The studies from DFT calculation of 10 and 11 coincide with the experimental results. Furthermore, the MRu25+ distances are regulated by the factors including the bonding force of M-pyridyl and the static repulsion between M and Ru25+ unit. Interestingly, the trend for these distances is in line with that observed in trans-M(py)4Cl2 complexes.

9.
Chem Commun (Camb) ; 53(63): 8886-8889, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28737805

RESUMO

Using the planar 1,8-naphthyridin-2(1H)-one (Hnpo) ligand, novel nonhelical HMSCs [Mo2M(npo)4(NCS)2] (M = Fe, Co, Ni) were synthesised and they exhibited high single-molecule conductance.

10.
Chem Commun (Camb) ; 52(83): 12380-12382, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27711361

RESUMO

A dimeric molybdenum precursor and nickel ions are used to synthesize a symmetric heteropentanuclear complex, [Mo2NiMo2(tpda)4(NCS)2]. This complex possesses unique structural features, as the four ligands are coordinated to the metal framework in a meso configuration. Furthermore, the central Ni2+ ion is in a high spin state.

11.
Chem Asian J ; 9(11): 3111-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25146243

RESUMO

Chirality control of helixes with the Δ (P) or Λ (M) form is interesting in various fields such as extended metal atom chains (EMACs), in which the metal backbones are helically wrapped by four ligands. Herein, we report two EMACs, Δ-[Ni5((-)camnpda)4] and Λ-[Ni5((+)camnpda)4], whose chiralities are controlled by chiral ligands with naphthyridine and camphorsulfonyl groups. There is a large energy difference (108 kcal mol(-1)) between the two helical structures with one chiral ligand. Furthermore, the electron communication between [Ni2](3+) units is more pronounced than in [Ni5(bna)4Cl2](2+) (bna=binaphthyridylamido). The results demonstrate control of small-scale helical structure and set the stage for future development of chiral controlled base and nanoelectronic devices.

12.
Chemistry ; 20(16): 4526-31, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24677325

RESUMO

This study develops the first heteropentametal extended metal atom chain (EMAC) in which a string of nickel cores is incorporated with a diruthenium unit to tune the molecular properties. Spectroscopic, crystallographic, and magnetic characterizations show the formation of a fully delocalized Ru2(5+) unit. This [Ru2]-containing EMAC exhibits single-molecule conductance four-fold superior to that of the pentanickel complex and results in features of negative differential resistance (NDR), which are unobserved in analogues of pentanickel and pentaruthenium EMACs. A plausible mechanism for the NDR behavior is proposed for this diruthenium-modulated EMAC.

14.
Chem Commun (Camb) ; 46(27): 5018-20, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20526484

RESUMO

This paper describes the synthesis and physical properties of an uniquely asymmetric heptanickel string complex exhibiting a charge disproportionate model along the linear nickel framework.

15.
Dalton Trans ; 39(16): 3890-6, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20372713

RESUMO

Two extended nickel string complexes, [Ni(7)(bnapy)(4)Cl(2)](Cl)(2) (2) and [Ni(9)(bnapya)(4)Cl(2)](PF(6))(2) (3) (bnapy(2-) = 2,6-bis(1,8-naphthyridylamido)pyridine and bnapya(3-) = bis(6-(1,8-naphthyridylamido)pyridyl)amido), which possess two redox-active [Ni(2)(napy)(4)](3+) units, were synthesized and characterized. The electronic communication between the two redox-active units in both complexes can be investigated not only by magnetic measurements but also by analyzing the difference between two consecutive one-electron oxidation peaks (DeltaE(1/2)) of 2 and 3. The antiferromagnetic coupling between the two [Ni(2)(napy)(4)](3+) fragments become weaker as the metal frameworks are elongated (J = -13.21 and -1.48 cm(-1) for 2 and 3, respectively). Moreover, the DeltaE(1/2) values of 2 and 3 are 110 and 84 mV, respectively, which are smaller than that (300 mV) of their pentanickel analogue [Ni(5)(bna)(4)(Cl)(2)](PF(6))(2) (bna(-) = bisnaphthyridylamido) (1). These DeltaE(1/2) values indicate that the electronic communication decreases with increasing number of inner diamagnetic nickel ions in nickel string complexes.

16.
Dalton Trans ; (18): 3571-3, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19381419

RESUMO

This paper describes the physical properties of the (Ni(2))(3+) mixed-valence unit that is an excellent conductivity-enhanced tool for metal string complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...