Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Ultrasonics ; 132: 107012, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37071944

RESUMO

Freehand 3-D ultrasound systems have been advanced in scoliosis assessment to avoid radiation hazards, especially for teenagers. This novel 3-D imaging method also makes it possible to evaluate the spine curvature automatically from the corresponding 3-D projection images. However, most approaches neglect the three-dimensional spine deformity by only using the rendering images, thus limiting their usage in clinical applications. In this study, we proposed a structure-aware localization model to directly identify the spinous processes for automatic 3-D spine curve measurement using the images acquired with freehand 3-D ultrasound imaging. The pivot is to leverage a novel reinforcement learning (RL) framework to localize the landmarks, which adopts a multi-scale agent to boost structure representation with positional information. We also introduced a structure similarity prediction mechanism to perceive the targets with apparent spinous process structures. Finally, a two-fold filtering strategy was proposed to screen the detected spinous processes landmarks iteratively, followed by a three-dimensional spine curve fitting for the spine curvature assessments. We evaluated the proposed model on 3-D ultrasound images among subjects with different scoliotic angles. The results showed that the mean localization accuracy of the proposed landmark localization algorithm was 5.95 pixels. Also, the curvature angles on the coronal plane obtained by the new method had a high linear correlation with those by manual measurement (R = 0.86, p < 0.001). These results demonstrated the potential of our proposed method for facilitating the 3-D assessment of scoliosis, especially for 3-D spine deformity assessment.


Assuntos
Escoliose , Adolescente , Humanos , Escoliose/diagnóstico por imagem , Corpo Vertebral , Coluna Vertebral/diagnóstico por imagem , Imageamento Tridimensional/métodos , Ultrassonografia/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-37018676

RESUMO

Tracking the myotendinous junction (MTJ) motion in consecutive ultrasound images is essential to assess muscle and tendon interaction and understand the mechanics' muscle-tendon unit and its pathological conditions during motion. However, the inherent speckle noises and ambiguous boundaries deter the reliable identification of MTJ, thus restricting their usage in human motion analysis. This study advances a fully automatic displacement measurement method for MTJ using prior shape knowledge on the Y-shape MTJ, precluding the influence of irregular and complicated hyperechoic structures in muscular ultrasound images. Our proposed method first adopts the junction candidate points using a combined measure of Hessian matrix and phase congruency, followed by a hierarchical clustering technique to refine the candidates approximating the position of the MTJ. Then, based on the prior knowledge of Y-shape MTJ, we finally identify the best matching junction points according to intensity distributions and directions of their branches using multiscale Gaussian templates and a Kalman filter. We evaluated our proposed method using the ultrasound scans of the gastrocnemius from 8 young, healthy volunteers. Our results present more consistent with the manual method in the MTJ tracking method than existing optical flow tracking methods, suggesting its potential in facilitating muscle and tendon function examinations with in vivo ultrasound imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...