Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
J Environ Manage ; 362: 121349, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833929

RESUMO

The use of Ni-based catalysts is a common method for eliminating tar through catalytic cracking. Carbon deposition is the main cause of deactivation in Ni/ZSM-5 catalysts, with filamentous MWCNTs being the primary form of carbon deposits. This study investigates the formation and evolution of CNTs during the catalytic process of biomass tar to explore the mechanism behind carbon deposition. The effect of the 9Ni/10MWCNTs/81ZSM-5 on toluene reforming was investigated through a vertical furnace. Gases produced by tar catalysis were evaluated through GC analysis. The physicochemical structure, properties and catalytic performance of the catalyst were also tested. TG analysis was used to assess the accumulation and oxidation reactivity of carbon on the catalyst surface. An analysis was conducted on the mechanism of carbon deposition during catalyst deactivation in tar catalysis. The results showed that the 9Ni/91ZSM-5 had a superior toluene conversion of 60.49%, but also experienced rapid and substantial carbon deposition up to 52.69%. Carbon is mainly deposited as curved filaments on both the surface and pore channels of the catalyst. In some cases, tip growth occurs where both carbon deposition and Ni coexist. Furthermore, specific surface area and micropore volume are reduced to varying degrees due to carbon deposition. With the time increased, the amount of carbon deposited on the catalyst surface increased to 62.81%, which gradually approached saturation, and the overall performance of the catalyst was stabilized. This situation causes toluene molecules to detach from the active sites within the catalyst, hindering gas release, which leads to reduced catalytic activity and further carbon deposition. It provides both a basis for the development of new catalysts and an economically feasible solution for practical tar reduction and removal.


Assuntos
Nanotubos de Carbono , Níquel , Catálise , Nanotubos de Carbono/química , Níquel/química , Alcatrões/química , Carbono/química , Tolueno/química , Oxirredução
2.
Clin Transl Med ; 13(12): e1494, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38037469

RESUMO

BACKGROUND: Growing evidence has suggested the role of stem cell-derived small extracellular vesicles (sEVs) in intervertebral disc degeneration (IVDD). The cargo sorting of sEVs, particularly miRNAs, may be influenced when the donor cell is subjected to oxidative stress. Here, we discovered that miRNAs containing specific motifs are selectively sorted into intraluminal vesicles within mesenchymal stem cells (MSCs) in response to oxidative stress. METHODS: Analysis of miRNA cargoes in sEVs derived from normal MSCs (C-sEVs) or stressed MSCs (T-sEVs) was conducted using miRNA sequencing. Differential expressed miRNAs in sEVs and the identification of motifs were evaluated through bioinformatics analysis. Protein binding was assessed using immunofluorescent staining and immunoprecipitation analysis. Additionally, RNA pull down and RNA immunoprecipitation (RIP) immunoprecipitation were employed to determine the binding between miRNAs and proteins. The effects of C-sEVs and T-sEVs on IVDD were compared by detecting the expression levels of phenotypic genes in vitro or histological evaluation in vivo. RESULTS: The sorting process of miRNAs is mediated by the nucleocytoplasmic transport of heterogeneous nuclear ribonucleoproteins, which in turn facilitates the phosphorylation of SNAP25 and promotes the transport and secretion of sEVs. Additionally, CHMP1B plays a role in membrane repair and protects against cell ferroptosis upon oxidative stress, concurrently affecting the release of sEVs. Notably, stem cell-derived sEVs associated with ferroptosis impair the therapeutic efficacy for IVDD. However, the application of engineered sEVs containing a specific miRNA inhibitor exhibits the potential to reinstate the therapeutic efficacy for IVDD both in vitro and in vivo. CONCLUSIONS: Taken together, our findings shed light on the mechanism of miRNAs sorting into sEVs and offer new insights for the optimization of sEV-based treatments during intervertebral disc regeneration. regeneration.


Assuntos
Vesículas Extracelulares , Degeneração do Disco Intervertebral , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/terapia , Células-Tronco , MicroRNAs/genética , Vesículas Extracelulares/genética
3.
J Transl Med ; 21(1): 711, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817199

RESUMO

BACKGROUND: Extracellular matrix stiffness is emerging as a crucial mechanical cue that drives the progression of various diseases, such as cancer, fibrosis, and inflammation. The matrix stiffness of the nucleus pulposus (NP) tissues increase gradually during intervertebral disc degeneration (IDD), while the mechanism through which NP cells sense and react to matrix stiffness remains unclear. In addition, mitochondrial dynamics play a key role in various cellular functions. An in-depth investigation of the pathogenesis of IDD can provide new insights for the development of effective therapies. In this study, we aim to investigate the effects of matrix stiffness on mitochondrial dynamics in IDD. METHODS: To build the gradient stiffness model, NP cells were cultured on polystyrene plates with different stiffness. Western blot analysis, and immunofluorescence staining were used to detect the expression of mitochondrial dynamics-related proteins. Flow cytometry was used to detect the mitochondrial membrane potential and intracellular Ca2+ levels. Apoptosis related proteins, ROS level, and TUNEL staining were performed to assess the effect of substrate stiffness on NP cells. RESULTS: Stiff substrate increased phosphorylation of dynamin-related protein 1 (Drp1) at Ser616 by activating extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, which promoted mitochondrial fission and apoptosis in NP cells. Furthermore, Piezo1 activation was involved in the regulation of the post-translational modifications of Drp1 and mitochondrial fission caused by matrix stiffness. Inhibition of Piezo1 and ERK1/2 can effectively reduce stiffness-induced ROS elevation and apoptosis in NP cells. CONCLUSIONS: Our results revealed that stiff substrate causes Piezo1 activation and Ca2+ influx, results in ERK1/2 activation and phosphorylation of Drp1 at S616, and finally leads to mitochondrial fission and apoptosis in NP cells. These findings reveal a new mechanism of mechanotransduction in NP cells, providing novel insights into the development of therapies for treating IDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Degeneração do Disco Intervertebral/patologia , Dinâmica Mitocondrial , Mecanotransdução Celular , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Dinaminas/metabolismo , Dinaminas/farmacologia , Disco Intervertebral/patologia
4.
Orthop Surg ; 15(12): 3083-3091, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37771124

RESUMO

OBJECTIVE: Conventional correction techniques were challenging and of high risk of neurological complications for the correction of severe and rigid kyphoscoliosis. A new technical note we developed and named as sequential correction, was used to treat severe and rigid kyphoscoliosis. The present study was to compare the clinical outcomes of sequential correction versus conventional correction for the treatment of severe and rigid kyphoscoliosis. METHODS: This is a respectively case-control study. Between January 2014 and December 2019, 36 adults underwent the surgical correction of severe and rigid kyphoscoliosis and were included in the present study. Among them, 20 adults underwent conventional correction, 16 adults underwent sequential correction. Major curve Cobb angle, kyphotic angle, coronal imbalance, and sagittal vertical axis were compared between two groups. The patient-reported health-related quality of life outcomes, including the Oswestry disability index score, and SRS-22 questionnaire, were recorded. Independent samples t-test, Mann-Whitney U test, and Wilcoxon signed-rank test, were used to compare the differences between two groups according to the results of normal distribution test. RESULTS: In conventional correction group, the mean major curve Cobb angle was 122.50° preoperatively, 40.35° immediately after surgery, and 43.95° at final follow-up postoperatively; the mean kyphotic angle was 97.45° preoperatively, 34.45° immediately after surgery, and 38.30° at final follow-up postoperatively. In the sequential correction group, the mean major angle was 134.44° preoperatively, 44.56° immediately after surgery, and 46.25° at final follow-up postoperatively; the mean kyphotic angle was 112.31° preoperatively, 39.00° immediately after surgery, and 40.38° at final follow-up postoperatively. The mean major curve Cobb angle and kyphotic angle of both groups were improved significantly, while there were no significant differences between two groups (p > 0.001). Improved self-reported quality of life scores were achieved postoperatively and at final follow-up postoperatively, and there were no significant differences between the two groups. The total complication rate of the patients underwent conventional correction was 55%, and the total complication rate of the patients underwent sequential correction was 43.75%. The complication rate of the two groups showed no significant difference. CONCLUSIONS: Sequential correction is an excellent and safe treatment for severe and rigid kyphoscoliosis in adults, with similar clinical outcomes with conventional correction. The total complication rate of the patients who underwent sequential correction was slightly lower than conventional correction.


Assuntos
Cifose , Escoliose , Fusão Vertebral , Adulto , Humanos , Estudos Retrospectivos , Estudos de Casos e Controles , Qualidade de Vida , Resultado do Tratamento , Fusão Vertebral/métodos , Cifose/cirurgia , Escoliose/cirurgia
5.
Orthop Surg ; 15(10): 2701-2708, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37620961

RESUMO

BACKGROUND AND OBJECTIVE: Adjacent segment disease (ASD) is a well-known complication after interbody fusion. Revision surgery is necessary for symptomatic ASD to further decompress and fix the affected segment. However, no optimal construct is accepted as a standard in treating ASD. The purpose of this study was to compare the biomechanical effects of different surgical approaches for the treatment of ASD after primary transforaminal lumbar interbody fusion (TLIF). METHODS: A finite element model of the L1-S1 was conducted based on computed tomography scan images. The primary surgery model was developed with a single-level TLIF at L4-L5 segment. The revision surgical models were developed with anterior lumbar interbody fusion (ALIF), lateral lumbar interbody fusion (LLIF), or TLIF at L3-L4 segment. The range of motion (ROM), intradiscal pressure (IDP), and the stress in cages were compared to investigate the biomechanical influences of different surgical approaches. RESULTS: The results indicated that all the three surgical approaches can stabilize the spinal segment by reducing the ROM at revision level. The ROM and IDP at adjacent segments of revision model of TLIF was greater than those of other revision models. While revision surgery with ALIF and LLIF had similar effects on the ROM and IDP of adjacent segments. Compared among all the surgical models, cage stress in revision model of TLIF was the maximum in extension and axial rotation. CONCLUSION: The IDP at adjacent segments and stress in cages of revision model of TLIF was greater than those of ALIF and LLIF. This may be that direct extension of the surgical segment in the same direction results in stress concentration.

6.
BMC Musculoskelet Disord ; 24(1): 697, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653384

RESUMO

OBJECTIVE: The present study is to evaluate the clinical outcomes of the sequential correction of severe and rigid kyphoscoliosis. METHODS: Between January 2014 and December 2020, 27 adults with severe and rigid kyphoscoliosis underwent sequential correction combined with posterior grade 4 or grade 5 spinal osteotomy. Radiological parameters, including the major curve Cobb angle, kyphotic angle, coronal imbalance, and sagittal vertical axis (SVA), were compared. Patient self-reported health-related quality of life (HRQOL) scores were used to evaluate clinical outcomes. RESULTS: The mean major curve Cobb angle improved from 134.30 ± 13.24° to 44.48 ± 9.34° immediately after surgery and to 46.11 ± 8.94° at the final follow-up. The mean kyphotic angle improved from 112.15 ± 20.28° to 38.63 ± 15.00° immediately after surgery and to 39.85 ± 14.92° at the final follow-up. The mean preoperative major curve Cobb angle of grade 5 spinal osteotomy group was higher than that of grade 4 spinal osteotomy group. Coronal imbalance and SVA slightly improved. The patient self-reported HRQOL scores improved postoperatively and at the final follow-up. Activity, appearance and total scores of the SRS-22 of the grade 5 spinal osteotomy group at the final follow-up were significantly better than those of the grade 4 spinal osteotomy group. CONCLUSIONS: Sequential correction combined with posterior grade 4 or grade 5 spinal osteotomies is an excellent and safe treatment for severe and rigid kyphoscoliosis in adults. Sequential correction combined with posterior grade 5 spinal osteotomies can be used to correct severe and rigid kyphoscoliosis with higher major curve Cobb angle.


Assuntos
Cifose , Qualidade de Vida , Adulto , Humanos , Cifose/diagnóstico por imagem , Cifose/cirurgia , Procedimentos Neurocirúrgicos , Osteotomia , Autorrelato
7.
Adv Healthc Mater ; 12(23): e2300458, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37022980

RESUMO

Increased tissue stiffness is associated with various pathological processes, such as fibrosis, inflammation, and aging. The matrix stiffness of the nucleus pulposus (NP) tissues increases gradually during intervertebral disc degeneration (IDD), while the mechanism through which NP cells sense and react to matrix stiffness remains unclear. In this study, the results indicate that ferroptosis is involved in stiff substrate-induced NP cell death. The expression of acyl-CoA synthetase long-chain family member 4 (ACSL4) increases in NP cells of the stiff group, which mediates lipid peroxidation and ferroptosis in NP cells. In addition, stiff substrate activates the hippo signaling cascade and induces the nuclear translocation of yes-associated protein (YAP). Interestingly, inhibition of YAP is efficient to reverse the increase of ACSL4 expression caused by matrix stiffness. Furthermore, stiff substrate suppresses the expression of N-cadherin in NP cells. N-cadherin overexpression can inhibit YAP nuclear translocation via the formation of the N-cadherin/ß-catenin/YAP complex, and reverse matrix stiffness-induced ferroptosis in NP cells. Finally, the effects of YAP inhibition and N-cadherin overexpression on IDD progression are further illustrated in animal models. These findings reveal a new mechanism of mechanotransduction in NP cells, providing novel insights into the development of therapies for the treatment of IDD.


Assuntos
Ferroptose , Degeneração do Disco Intervertebral , Núcleo Pulposo , Animais , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Caderinas/metabolismo , Mecanotransdução Celular , Degeneração do Disco Intervertebral/metabolismo
8.
J Environ Manage ; 336: 117710, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921471

RESUMO

Nitrogen, as a common element, is widely present in biomass. The effects of nitrogenous substances on the same origin pyrolysis of biomass and the consequences of N-containing biochar on the catalytic process of volatiles are important for further analyzing the pyrolysis mechanism of biomass. In this research, N-containing biochar was prepared under different conditions, and the interaction between N-containing biochar and biomass pyrolysis volatiles at 400-700 °C was studied. The results show that N-containing biochar can simultaneously participate in reactions as adsorbents, catalysts, and reactants. Its catalytic effect is obviously different for various N configurations. Pyridinic N and pyrrolic N can promote the cracking of lignin into methoxy phenol compounds and promote the further cracking of 5-hydroxymethylfurfural. Graphitic N and oxidized N can promote the further decomposition of phenol and the conversion of D-xylose into small-molecule ketones. In addition, oxidized N can also inhibit the cracking of lignin to produce guaiacol. In the long-term interaction, the highly active pyridinic N tends to convert to a more stable graphitic N.


Assuntos
Lignina , Pirólise , Fenóis , Nitrogênio , Carvão Vegetal , Biomassa
9.
ACS Nano ; 17(3): 2537-2553, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36730125

RESUMO

As mesenchymal stem-cell-derived small extracellular vesicles (MSC-sEVs) have been widely applied in treatment of degenerative diseases, it is essential to improve their cargo delivery efficiency in specific microenvironments of lesions. However, the interaction between the microenvironment of recipient cells and MSC-sEVs remains poorly understood. Herein, we find that the cargo delivery efficiency of MSC-sEVs was significantly reduced under hypoxia in inflammaging nucleus pulposus cells due to activated endocytic recycling of MSC-sEVs. Hypoxia-inducible factor-1 (HIF-1)-induced upregulated RCP (also known as RAB11FIP1) is shown to promote the Rab11a-dependent recycling of internalized MSC-sEVs under hypoxia via enhancing the interaction between Rab11a and MSC-sEV. Based on this finding, si-RCP is loaded into MSC-sEVs using electroporation to overcome the hypoxic microenvironment of intervertebral disks. The engineered MSC-sEVs significantly inhibit the endocytic recycling process and exhibit higher delivery efficiency under hypoxia. In a rat model of intervertebral disk degeneration (IDD), the si-RCP-loaded MSC-sEVs successfully treat IDD with improved regenerative capacity compared with natural MSC-sEV. Collectively, the findings illustrate the intracellular traffic mechanism of MSC-sEVs under hypoxia and demonstrate that the therapeutic capacity of MSC-sEVs can be improved via inhibiting endocytic recycling. This modifying strategy may further facilitate the application of extracellular vesicles in hypoxic tissues.


Assuntos
Vesículas Extracelulares , Ratos , Animais , Hipóxia
10.
Int J Neurosci ; 133(12): 1309-1314, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35698431

RESUMO

Spinal giant cell tumor (GCT) combined with secondary aneurysmal bone cyst (ABC) is a locally aggressive primary bone tumor. Total en bloc spondylectomy has never been reported to treat thoracic GCT combined with secondary ABC. We retrospectively reviewed two cases of spinal GCT combined with secondary ABC. A 41-year-old male patient was presented with back pain due to irregular expansive bone destruction involving the T6 vertebral body and intraspinal space-occupying lesion. Total en bloc spondylectomy of T6 vertebra was performed with good neurological status after the surgery. A 29-year-old female patient was presented with right scapular region pain due to irregular expansive bone destruction involving the T5 vertebral body and intraspinal space-occupying lesion. Total en bloc spondylectomy of T5 vertebra was performed with good neurological status after the surgery. Adjuvant radiation therapy was applied after the surgery without local recurrence at the 12-month or 24-month follow-up. Spinal GCT combined with secondary ABC appears to have a high local recurrence rate. Therefore, total en bloc spondylectomy should be applied to treat thoracic GCT combined with secondary ABC.


Assuntos
Cistos Ósseos Aneurismáticos , Tumores de Células Gigantes , Neoplasias da Coluna Vertebral , Masculino , Feminino , Humanos , Adulto , Estudos Retrospectivos , Cistos Ósseos Aneurismáticos/complicações , Cistos Ósseos Aneurismáticos/diagnóstico por imagem , Cistos Ósseos Aneurismáticos/cirurgia , Neoplasias da Coluna Vertebral/complicações , Neoplasias da Coluna Vertebral/diagnóstico por imagem , Neoplasias da Coluna Vertebral/cirurgia , Tumores de Células Gigantes/patologia , Vértebras Torácicas/diagnóstico por imagem , Vértebras Torácicas/cirurgia , Vértebras Torácicas/patologia
11.
Cell Prolif ; 56(3): e13368, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36450665

RESUMO

Lysophagy is a form of selective autophagy to remove unwanted lysosomes. However, its role in the pathogenesis of intervertebral disc degeneration (IDD) remains unclear. We intended to investigate the relationship between lysophagy and ferroptosis, as well as the potential involved molecules during IDD. Human nucleus pulposus (NP) cells were obtained from clinical patients. The protein levels, protein colocalization and cellular reactive oxygen species levels were assessed by western blotting, immunofluorescence analysis, immunoprecipitation and flow cytometry, respectively. The in vivo experiments were conducted based on the needle puncture-induced IDD model in rats. Compression pressure induces the lysophagy inactivation and lysosomal damage, resulting in iron overload and ferroptosis in human NP cells. Notably, Ras GTPase-activating protein-binding proteins 1 (G3BP1) resides at lysosomes to coordinate lysophagy activity mainly via the function of G3BP1/TSC2 complex. Dysfunction of G3BP1/TSC2 complex accelerates the lysosomal damage and ferroptosis in NP cells. Besides, inhibition of mTOR signalling ameliorates lysosomal damage and protects against cell ferroptosis. The in vivo experiments also demonstrate that the G3BP1/mTOR signalling is involved in the progression of IDD. These findings illustrate the relationship between lysophagy and compression-induced cell ferroptosis. It also indicates the positive role of G3BP1 and may provide potential targets for IDD treatment.


Assuntos
Ferroptose , Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animais , Humanos , Ratos , Apoptose , DNA Helicases , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Macroautofagia , Núcleo Pulposo/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , RNA Helicases/uso terapêutico , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Serina-Treonina Quinases TOR/metabolismo
12.
Eur J Med Res ; 27(1): 316, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581906

RESUMO

OBJECTIVES: The purpose of this study was to evaluate the effectiveness of sequential correction using satellite rod in patients with severe rigid spinal deformity undergoing posterior-only PVCR. METHODS: 19 patients with severe rigid spinal deformity who underwent PVCR at our center from January 2014 to December 2019 were reviewed. Radiographic measurements, including major coronal Cobb angle, kyphotic curve angle, coronal and sagittal balance were measured. Clinical results were noted, including the SRS-22 questionnaire, the Oswestry Disability Index score, and complications. RESULTS: Total 19 patients were followed at least 2 years. The mean coronal Cobb angle decreased from 122.7° ± 13.17° to 57.89° ± 8.65° postoperatively, and to 58.42° ± 8.98° at final follow-up. Correction rate is 52.8%. The kyphotic curve angle improved from 102.2° ± 17.05° preoperatively to 39.68° ± 13.67° postoperatively, and to 37.74° ± 12.14° at final follow-up. Correction rate is 61.2%. Compared to preoperative results, apex vertebral translation, ODI and SRS-22 were significantly improved at the final follow-up. CONCLUSIONS: For patients with severe rigid spinal deformities, sequential correction with an auxiliary satellite rod can effectively reduce surgical difficulty and improve correction rate.


Assuntos
Procedimentos Ortopédicos , Coluna Vertebral , Humanos , Cifose/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Coluna Vertebral/anormalidades , Coluna Vertebral/cirurgia , Procedimentos Ortopédicos/métodos
13.
J Nanobiotechnology ; 20(1): 420, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123708

RESUMO

Intervertebral disc degeneration (IDD) is the pathological reason of back pain and the therapeutic approaches are still unsatisfactory. Recently, mesenchymal stem cell-derived small extracellular vesicles (EVs) have emerged as the novel regenerative method for IDD. In this study, we intensively investigated the therapeutic mechanism of small EVs, and found that vasorin protein enriched in EVs promoted the proliferation and extracellular matrix anabolism of nucleus pulposus cells via the Notch1 signaling pathway. Then, we fabricated a thermoresponsive gel which composed of Pluronic F127 and decellularized extracellular matrix (FEC) for the delivery and sustained release of EVs. Besides, ex vivo and in vivo results showed that EVs embedded in FEC (EVs@FEC) ameliorate the disc degeneration efficiently and achieve better therapeutic effects than one-off EVs delivery. Collectively, these findings deepen the understanding of EVs mechanism in treating intervertebral disc degeneration, and also illustrate the promising capacity of sustained EVs release system for intervertebral disc regeneration.


Assuntos
Vesículas Extracelulares , Degeneração do Disco Intervertebral , Células-Tronco Mesenquimais , Preparações de Ação Retardada/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Células-Tronco Mesenquimais/metabolismo , Poloxâmero
14.
Acta Biomater ; 150: 83-95, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35917912

RESUMO

Mesenchymal stem cells (MSCs) are ideal candidates for tissue engineering and regenerative medicine because of their proliferative capacity and differentiation potential. However, the hypertrophic phenotype occurring in late MSCs chondrogenic differentiation severely limits their clinical translation. While hypertrophy inhibition strategies have been explored, the role of cell metabolism in MSCs chondrogenesis has rarely been studied. In this study, we found that hypertrophy occurred in the late stage of MSCs chondrogenesis with increased fatty acid oxidation (FAO) and decreased glycolysis, as well as cell-cell junctions impairment. Therefore, a N-cadherin mimetic hydrogel was developed to enhance cell-cell junctions via N-cadherin mimetic peptides and high seeding density. The N-cadherin mimetic hydrogel attenuated hypertrophy through regulating glycolysis and FAO. The regulation of cell-cell junctions mechanotransduction on cell metabolism was partly mediated by Hif-1α. In addition, 2D and 3D culture of N-cadherin mimetic hydrogel had similar functions on N-cadherin expression and chondrogenesis in MSCs. Our study is the first to reveal that metabolic remodeling induced hypertrophy during MSCs chondrogenesis, and indicate the effect of N-cadherin mimetic hydrogel on hypertrophy inhibition of MSCs. STATEMENT OF SIGNIFICANCE: The development of hypertrophy during MSCs chondrogenesis severely limits its clinical translation. Various strategies have been explored to inhibit hypertrophy by chemical and/or mechanical stimulation. However, the role of cell metabolism in MSCs chondrogenesis has rarely been studied. In this study, we developed an RNA sequencing at day 0, 7, and 21 of MSCs chondrogenesis to clarify the mechanisms that mediate hypertrophy. We found that hypertrophy occurred in the late stage of MSCs chondrogenesis with increased FAO and decreased glycolysis, as well as impaired cell-cell junctions. We also found that N-cadherin mimetic hydrogel attenuated hypertrophy and enhanced chondrogenesis through regulating glycolysis and FAO. Our finding provides new insights into the application of MSCs in tissue engineering and regenerative medicine.


Assuntos
Condrogênese , Hidrogéis , Caderinas/farmacologia , Diferenciação Celular , Células Cultivadas , Humanos , Hidrogéis/farmacologia , Hipertrofia , Mecanotransdução Celular
15.
Comput Intell Neurosci ; 2022: 3141451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669674

RESUMO

In recent years, with the rapid development of science and technology, traditional teaching methods and concepts have been frequently impacted. Artificial neural network shows excellent intelligence because of its powerful nonlinear processing ability and efficient associative function. It is increasingly becoming an emerging object in the field of artificial intelligence. At the same time, in the field of education and teaching, the integration of English teaching and multimodality not only condenses the characteristics of the times but also expands new teaching models, bringing opportunities for the emergence of new teaching models. Based on this, this study proposes an interactive method for multimodal English teaching based on artificial neural networks. It aims to study how to use the autonomous learning of artificial neural networks to accelerate the fusion of different modalities and at the same time make suggestions for different teaching interaction modes. This paper firstly analyzes the interaction of English teaching under the traditional mode. It then proposes a multimodal fusion interaction method based on artificial neural networks. It finally explores the feasibility of the new interaction theory by setting up an experimental group and a control group. Through the analysis of the experimental data, the final data results show that the multimodal fusion interaction based on artificial neural network has a very significant effect, and the students' interest in the English classroom is as high as 81.9%. This fully demonstrates the great value of the new fusion method, and it has certain enlightening significance for the establishment of English teaching modes and curriculum reform.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Humanos , Aprendizagem , Estudantes , Ensino , Tecnologia
16.
Small ; 18(30): e2201056, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35652171

RESUMO

Bone repair in real time is a challenging medical issue for elderly patients; this is mainly because aged bone marrow mesenchymal stem cells (BMSCs) possess limited osteogenesis potential and repair capacity. In this study, triboelectric stimulation technology is used to achieve bone repair via mechanosensation of Piezo1 by fabricating a wearable pulsed triboelectric nanogenerator (WP-TENG) driven by human body movement. A peak value of 30 µA has the optimal effects to rejuvenate aged BMSCs, enhance their osteogenic differentiation, and promote human umbilical vein endothelial cell tube formation. Further, previous studies demonstrate that triboelectric stimulation of a WP-TENG can reinforce osteogenesis of BMSCs and promote the angiogenesis of human umbilical vein endothelial cells (HUVECs). Mechanistically, aged BMSCs are rejuvenated by triboelectric stimulation via the mechanosensitive ion channel Piezo1. Thus, the osteogenesis potential of BMSCs is enhanced and the tube formation capacity of HUVECs is improved, which is further confirmed by augmented bone repair and regeneration in in vivo investigations. This study provides a potential signal transduction mechanism for rejuvenating aged BMSCs and a theoretical basis for bone regeneration using triboelectric stimulation generated by a WP-TENG.


Assuntos
Células-Tronco Mesenquimais , Dispositivos Eletrônicos Vestíveis , Idoso , Células da Medula Óssea , Diferenciação Celular/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Canais Iônicos , Osteogênese
17.
BMC Musculoskelet Disord ; 23(1): 602, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35733210

RESUMO

BACKGROUND: To evaluate the incidence and risk factors of postoperative distal adding-on in patients with Lenke 5C adolescent idiopathic scoliosis (AIS). More accurate selection criteria for the lower instrumented vertebra (LIV) should be confirmed to prevent distal adding-on. METHODS: Forty-six patients with Lenke 5C AIS who underwent posterior fusion were enrolled in the study. Patients were allocated into adding-on and no adding-on groups. Demographic data, clinical data, and radiographic parameters were recorded and compared. RESULTS: Postoperative distal adding-on occurred in eight patients (17.4%) during follow-up. Demographic data, clinical data, and baseline radiographic parameters of the two groups were not significantly different. The postoperative thoracolumbar (TL) or lumbar (L) Cobb angle, LIV translation, and LIV + 1 translation were higher in the adding-on group than those in the no adding-on group, while the postoperative coronal imbalance of the adding-on group was lower than that of the no adding-on group. The level difference of last barely touched vertebra (LBTV) and last substantial touched vertebra (LSTV) with LIV were higher in the adding-on group than in the no adding-on group. CONCLUSION: Postoperative TL/L curve, postoperative LIV translation, postoperative LIV + 1 translation, and postoperative coronal imbalance were determined as risk factors for postoperative distal adding-on in patients with Lenke 5C AIS. Moreover, LIV selection of LBTV-1 or LSTV-1 may cause a higher risk of postoperative distal adding-on.


Assuntos
Cifose , Escoliose , Fusão Vertebral , Adolescente , Seguimentos , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Estudos Retrospectivos , Escoliose/diagnóstico por imagem , Escoliose/cirurgia , Fusão Vertebral/efeitos adversos , Vértebras Torácicas/diagnóstico por imagem , Vértebras Torácicas/cirurgia , Resultado do Tratamento
18.
Front Surg ; 9: 885949, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756474

RESUMO

Objective: This study aimed to evaluate the radiographic risk factors of postoperative shoulder imbalance (PSI) after adult scoliosis (AS) correction surgery. Methods: Seventy-nine patients with AS undergoing correction surgery at a single institution were reviewed. The mean follow-up was 28 months. Patients were divided into two groups based on their radiographic shoulder height (RSH): (1) the balanced group (RSH <10 mm) and (2) the unbalanced group (RSH ≥10 mm). The preoperative and postoperative Cobb angles of the proximal thoracic (PT), main thoracic (MT), thoracolumbar/lumbar (TL/L) and upper instrumented vertebra (UIV) were measured. Results: No significant difference was found between the balanced and unbalanced groups when the UIV was T1-2, T3-4, or below T4. Univariate analysis indicated that the unbalanced group had significantly higher postoperative RSH, lower percentage PT correction, and greater percentage MT correction. The classification and regression tree analysis revealed that when the correction percentage of PT curve was more than 55.3%, 84.4% of patients acquired shoulder balance. However, when the correction percentage of PT curve was less than 55.3%, and the correction percentage of MT curve was more than 56%, 65.7% of the patients developed PSI. Conclusions: In AS correction surgery, a lower percentage correction of the PT curve and greater percentage correction of the MT curve were independent radiographic risk factors of PSI, regardless of the UIV level. Sufficient PT correction is required to achieve postoperative shoulder balance in AS correction surgery when the MT curve is overcorrected.

19.
Acta Biochim Biophys Sin (Shanghai) ; 54(4): 524-536, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35607959

RESUMO

Accumulating evidence indicates that ER-phagy serves as a key adaptive regulatory mechanism in response to various stress conditions. However, the exact mechanisms underlying ER-phagy in the pathogenesis of intervertebral disc degeneration remain largely unclear. In the present study, we demonstrated that RETREG1-mediated ER-phagy is induced by glucose deprivation (GD) treatment, along with ER stress activation and cell function decline. Importantly, ER-phagy was shown to be crucial for cell survival under GD conditions. Furthermore, ER stress was suggested as an upstream event of ER-phagy upon GD treatment and upregulation of ER-phagy could counteract the ER stress response. Therefore, our findings indicate that RETREG1-mediated ER-phagy activation protects against GD treatment-induced cell injury via modulating ER stress in human nucleus pulposus cells.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Apoptose , Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Glucose/metabolismo , Humanos , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/patologia
20.
Exp Mol Med ; 54(2): 129-142, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145201

RESUMO

Low back pain (LBP) is a major musculoskeletal disorder and the socioeconomic problem with a high prevalence that mainly involves intervertebral disc (IVD) degeneration, characterized by progressive nucleus pulposus (NP) cell death and the development of an inflammatory microenvironment in NP tissue. Excessively accumulated cytosolic DNA acts as a damage-associated molecular pattern (DAMP) that is monitored by the cGAS-STING axis to trigger the immune response in many degenerative diseases. NLRP3 inflammasome-dependent pyroptosis is a type of inflammatory programmed death that promotes a chronic inflammatory response and tissue degeneration. However, the relationship between the cGAS-STING axis and NLRP3 inflammasome-induced pyroptosis in the pathogenesis of IVD degeneration remains unclear. Here, we used magnetic resonance imaging (MRI) and histopathology to demonstrate that cGAS, STING, and NLRP3 are associated with the degree of IVD degeneration. Oxidative stress induced cGAS-STING axis activation and NLRP3 inflammasome-mediated pyroptosis in a STING-dependent manner in human NP cells. Interestingly, the canonical morphological and functional characteristics of mitochondrial permeability transition pore (mPTP) opening with the cytosolic escape of mitochondrial DNA (mtDNA) were observed in human NP cells under oxidative stress. Furthermore, the administration of a specific pharmacological inhibitor of mPTP and self-mtDNA cytosolic leakage effectively reduced NLRP3 inflammasome-mediated pyroptotic NP cell death and microenvironmental inflammation in vitro and degenerative progression in a rat disc needle puncture model. Collectively, these data highlight the critical roles of the cGAS-STING-NLRP3 axis and pyroptosis in the progression of IVD degeneration and provide promising therapeutic approaches for discogenic LBP.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA Mitocondrial/farmacologia , Inflamassomos/metabolismo , Inflamação/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Núcleo Pulposo/metabolismo , Piroptose , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...