Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 154(6): 3868-3882, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38112485

RESUMO

Developing an effective and robust representation model for ocean sound speed profiles (SSPs) is crucial for numerous ocean acoustic applications. However, the performance of existing sound speed profile (SSP) representation methods, such as empirical orthogonal function and K-singular value decomposition, heavily relies on the number of selected basis functions. This could lead to overfitting of noise, as these methods are unable to distinguish between signals and noise during the basis function learning process. To overcome these limitations and effectively learn a large number of basis functions with strong representation power from potentially noisy SSP data, we propose a novel algorithm called deep matrix decomposition (deep MD). This algorithm utilizes untrained deep neural networks as priors to reject noise within the interpretable matrix decomposition framework. To achieve optimal performance with deep MD, we propose a stopping strategy based on the rank estimate to determine the termination epoch. Experimental results using real-life datasets demonstrate that deep MD is robust against various types of noise and outperforms traditional SSP representation methods in terms of SSP reconstruction and characterizing the transmission loss in underwater acoustics.

2.
J Acoust Soc Am ; 153(2): 877, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36859122

RESUMO

Uncertainties abound in sound speed profiles (SSPs) measured/estimated by modern ocean observing systems, which impede the knowledge acquisition and downstream underwater applications. To reduce the SSP uncertainties and draw insights into specific ocean processes, an interpretable deep dictionary learning model is proposed to cater for uncertain SSP processing. In particular, two kinds of SSP uncertainties are considered: measurement errors, which generally exist in the form of Gaussian noises; and the disturbances/anomalies caused by potential ocean dynamics, which occur at some specific depths and durations. To learn the generative patterns of these uncertainties while maintaining the interpretability of the resulting deep model, the adopted scheme first unrolls the classical K-singular value decomposition algorithm into a neural network, and trains this neural network in a supervised learning manner. The training data and model initializations are judiciously designed to incorporate the environmental properties of ocean SSPs. Experimental results demonstrate the superior performance of the proposed method over the classical baseline in mitigating noise corruptions, detecting, and localizing SSP disturbances/anomalies.

3.
BMC Bioinformatics ; 22(1): 358, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215183

RESUMO

BACKGROUND: A growing proportion of research has proved that microRNAs (miRNAs) can regulate the function of target genes and have close relations with various diseases. Developing computational methods to exploit more potential miRNA-disease associations can provide clues for further functional research. RESULTS: Inspired by the work of predecessors, we discover that the noise hiding in the data can affect the prediction performance and then propose an anti-noise algorithm (ANMDA) to predict potential miRNA-disease associations. Firstly, we calculate the similarity in miRNAs and diseases to construct features and obtain positive samples according to the Human MicroRNA Disease Database version 2.0 (HMDD v2.0). Then, we apply k-means on the undetected miRNA-disease associations and sample the negative examples equally from the k-cluster. Further, we construct several data subsets through sampling with replacement to feed on the light gradient boosting machine (LightGBM) method. Finally, the voting method is applied to predict potential miRNA-disease relationships. As a result, ANMDA can achieve an area under the receiver operating characteristic curve (AUROC) of 0.9373 ± 0.0005 in five-fold cross-validation, which is superior to several published methods. In addition, we analyze the predicted miRNA-disease associations with high probability and compare them with the data in HMDD v3.0 in the case study. The results show ANMDA is a novel and practical algorithm that can be used to infer potential miRNA-disease associations. CONCLUSION: The results indicate the noise hiding in the data has an obvious impact on predicting potential miRNA-disease associations. We believe ANMDA can achieve better results from this task with more methods used in dealing with the data noise.


Assuntos
MicroRNAs , Algoritmos , Área Sob a Curva , Biologia Computacional , Predisposição Genética para Doença , Humanos , MicroRNAs/metabolismo , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA