Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chin Med ; 19(1): 99, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010119

RESUMO

BACKGROUND: Allii Macrostemonis Bulbus is also named Xiebai in China. It is an edible vegetable, and also a famous herb for treating coronary heart disease. Allium chinense G. Don (ACGD) and Allium macrostemon Bunge (AMB) are it botanical sources. The aim of this study was to explore the cardioprotective effects, and decipher the visual spatial distribution and absolute content of primary metabolites derived from these two herbs. METHODS: H9c2 cells were used to perform the hypoxia-reoxygenation (H/R)-induced myocardial injury model. Their protective effects were evaluated by apoptosis levels. Furthermore, matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry imaging approach (MALDI-TOF MSI) was carried out to present the spatial location of primary metabolites including fatty acids, amino acids, carotenoids, and vitamins in these two Allium herbs. Multiple analytical methods were applied to perform quantitative analysis of these primary metabolites in AMB and ACGD bulbs by liquid chromatography tandem mass spectrometry (LC-MS). RESULTS: First, AMB and ACGD extracts both could increase the cell viability in H9c2 cells, and attenuate H/R-induced injury. They markedly decreased apoptosis, accompanied by activating the BCL-2/BAX pathway. Further, MALDI-TOF MSI-based relative quantification results showed several amino acids, fatty acids, carotenoids, and vitamins were largely rich in the tunics and outside scales of fresh bulbs, while some primary metabolites were abundant in their developing flower buds. Absolute quantification results displayed total contents of amino acids in ACGD bulbs were higher than those in AMB, while total contents of fatty acids and vitamins provides opposite trends in these two Allium herbs. The total contents of carotenoids and trace elements showed no significant differences between AMB and ACGD samples. CONCLUSIONS: This study would be helpful to understand the myocardial injury protection effects of these two Allium herbs, and the spatial accumulation and quantitative content levels of their main nutrients.

2.
Int J Biol Macromol ; 264(Pt 1): 130537, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432275

RESUMO

This study aimed to investigate the structural characteristics, in vivo antiatherosclerosis activity, and in vitro myocardial injury protection effects of polysaccharides from Allium macrostemon Bunge and Allium chinense G. Don. Thus, crude polysaccharides of Allium macrostemon Bunge and Allium chinense G. Don significantly reduced serum lipid levels, improved cardiac myocyte morphology and arrangement, and relieved the development of myocardial fibrosis. Meanwhile, the lesion areas of the aorta and aortic valve had evident visual improvements. Furthermore, two main novel purified polysaccharides, namely, AMB-1 and ACGD-1, were isolated and characterized from crude Allium macrostemon Bunge and Allium chinense G. Don fractions, respectively. The purified polysaccharides mainly consisted of fructose and glucose and had molecular weights of 25.22 and 19.53 kDa, respectively. In addition, Fourier transform infrared spectroscopy, methylation, and nuclear magnetic resonance data revealed the primary structures of the AMB1 (or ACGD1) backbone with branched side chains. Scanning electron microscope analysis showed that the purified polysaccharides were both piled together in a lamellar or clastic form with a smooth surface along with linear or irregular bulges. Moreover, the purified polysaccharides both showed nontoxicity on H9c2 cells and effectively dropped hypoxia/reoxygenation-induced apoptosis by the BCL-2/BAX pathway. Overall, the characterization of the structural properties and in vivo and in vitro myocardial injury protection effects of Allium macrostemon Bunge and Allium chinense G. Don polysaccharides enriched our understanding of their nutritional and medicinal values. To the best of our knowledge, this is the first study on the structural characteristics and bioactivities of Allium chinense G. Don polysaccharides.


Assuntos
Cebolinha-Francesa , Cebolas , Polissacarídeos , Espectroscopia de Ressonância Magnética , Polissacarídeos/farmacologia
3.
Sheng Wu Gong Cheng Xue Bao ; 21(2): 211-5, 2005 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-16013477

RESUMO

Based on the genomic sequence of SARS-CoV strain BJ101, antigenic immunodominant genes coding for the structure proteins of SARS-CoV were predicted by bio-informatics methods, and two chimeric genes A and B with multi-immunodominants lined up by Gly-Pro-Gly linker were synthesized. The chimeric genes were cloned into plasmid pGEX-6p-1 and expressed in E. coli with IPGT inducing. BALB/c mice were immunized with the purified recombinant fusion protein. The specificity of monoclonal antibodies were tested with a commercial ELISA kit for detecting antibody against SARS-CoV. The results showed that two peptides with molecular weights of 34kD and 35kD expressed by the two chimeric genes could be recognized by SARS patient convalescent serum in Western blot. Six positive hybridoma cell lines stably secreting monoclonal antibodies were selected. The subtype of monoclonal antibody D3C5 is IgG2a, and subtypes of all other five monoclonal antibodies are IgG1. Light chains of all monoclonal antibodies are kappa. With a commercial SARS-CoV antibodies detection ELISA kit, five out of six monoclonal antibodies were positively recognized. In western blot analysis with inactived virus cultures, D3D1 specifically recognized a band of about 180 kD. To further analyse the epitopes corresponding to the monoclonal antibodies, six oligoes (S1-S6) from S gene were synthesized and expressed. The results showed that the monoclonal antibodies D3D1 and D3C5 specifically recognized expression product of S2 and S5 oligoes, respectively. The S2 and S5 oligoes are corresponding to 447-458aa and 789-799aa of SARS-CoV S protein respectively.


Assuntos
Anticorpos Monoclonais/biossíntese , Epitopos , Glicoproteínas de Membrana/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Epitopos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Humanos , Hibridomas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Glicoproteína da Espícula de Coronavírus
4.
Biochem Biophys Res Commun ; 319(3): 929-35, 2004 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-15184071

RESUMO

The spike (S) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is a major virion structural protein. It plays an important role in interaction with receptor and inducing neutralizing antibodies. In the study, six tentative antigenic epitopes (S1 S2 S3 S4 S5 S6) of the spike protein of SARS-CoV were predicted by bio-informatics analysis, and a multi-epitope chimeric gene of S1-S2-S3-S4-S5-S6 was synthesized and fused to downstream GST gene in pGEX-6p-1. The Western blotting demonstrated that SARS patient convalescent serum could recognize the recombinant fusion protein. A number of monoclonal antibodies were developed against the fusion protein. In further, the six predicted epitope genes were individually fused to GST of pGEX-6p-1 and expressed in Escherichia coli BL21, respectively. Among six fusion peptides, S5 reacted with monoclonal antibody D3C5 and S2 reacted with monoclonal antibody D3D1 against spike protein of SARS-CoV. The epitopes recognized by monoclonal antibodies D3C5 and D3D1 are linear, and correspond to 447-458 and 789-799 amino acids of spike protein of SARS-CoV, respectively. Identification of antigenic epitope of spike protein of SARS-CoV could provide the basis for the development of immunity-based prophylactic, therapeutic, and diagnostic techniques for the control of severe acute respiratory syndrome.


Assuntos
Epitopos , Glicoproteínas de Membrana/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Galinhas , Biologia Computacional , Epitopos/genética , Humanos , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA