Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Exp Physiol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38774964

RESUMO

Previous studies have shown that podocyte injury is involved in the development of proteinuria in rats under hypobaric hypoxia conditions. Prolyl hydroxylase inhibitors (PHIs) may reduce proteinuria. This study aimed to further investigate whether the protective effects of hypoxia-inducible factor 1α (HIF1α) on podocyte injury induced by hypobaric hypoxia are related to Krüppel-like factor 4 (KLF4). Rats were housed in a low-pressure oxygen chamber to simulate a high-altitude environment (5000 m), and a PHI was intraperitoneally injected. Urinary protein electrophoresis was performed and the morphology of the podocytes was observed by electron microscopy. Rat podocytes were cultured under 1% O2, and siRNA was used to interfere with KLF4 expression. The protein expression levels of HIF1α, KLF4, CD2-associated protein (CD2AP) and nephrin were determined by western blotting. Compared with those in the experimental group, the rats in the intervention group on day 14 had lower urinary protein levels, increased protein expression levels of CD2AP and nephrin, and reduced podocyte injury. The results of in vitro experiments showed that the protein expression levels of KLF4, CD2AP and nephrin were greater in the PHI intervention group and lower in the HIF1α inhibitors group than in the low-oxygen group. The protein expression of CD2AP and nephrin in the siKLF4-transfected podocytes treated with PHI and HIF1α inhibitors did not differ significantly from that in the low-oxygen group. HIF1α may be involved in reducing progressive high-altitude proteinuria by regulating KLF4 expression and contributing to the repair of podocyte injury induced by hypobaric hypoxia.

2.
Anal Chem ; 96(18): 7179-7186, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38661266

RESUMO

This study uses real-time monitoring, at microsecond time scales, with a charge-sensing particle detector to investigate the evaporation and fission processes of methanol/micrometer-sized polystyrene beads (PS beads) droplets and bacterial particles droplets generated via electrospray ionization (ESI) under elevated temperatures. By incrementally raising capillary temperatures, the solvent, such as methanol on 0.75 µm PS beads, experiences partial evaporation. Further temperature increase induces fission, and methanol molecules continue to evaporate until PS ions are detected after this range. Similar partial evaporation is observed on 3 µm PS beads. However, the shorter period of the fission temperature range is necessary compared to 0.75 µm PS beads. For the spherical-shaped bacterium, Staphylococcus aureus, the desolvation process shows a similar fission period as compared to 0.75 µm PS beads. Comparably, the rod-shaped bacteria, Escherichia coli EC11303, and E. coli strain W have shorter fission periods than S. aureus. This research provides insights into the evaporation and fission mechanisms of ESI droplets containing different sizes and shapes of micrometer-sized particles, contributing to a better understanding of gaseous macroion formation.


Assuntos
Escherichia coli , Poliestirenos , Espectrometria de Massas por Ionização por Electrospray , Staphylococcus aureus , Poliestirenos/química , Escherichia coli/química , Tamanho da Partícula , Temperatura , Volatilização , Metanol/química , Microesferas
3.
Compr Rev Food Sci Food Saf ; 23(2): e13327, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517017

RESUMO

Food sensory evaluation mainly includes explicit and implicit measurement methods. Implicit measures of consumer perception are gaining significant attention in food sensory and consumer science as they provide effective, subconscious, objective analysis. A wide range of advanced technologies are now available for analyzing physiological and psychological responses, including facial analysis technology, neuroimaging technology, autonomic nervous system technology, and behavioral pattern measurement. However, researchers in the food field often lack systematic knowledge of these multidisciplinary technologies and struggle with interpreting their results. In order to bridge this gap, this review systematically describes the principles and highlights the applications in food sensory and consumer science of facial analysis technologies such as eye tracking, facial electromyography, and automatic facial expression analysis, as well as neuroimaging technologies like electroencephalography, magnetoencephalography, functional magnetic resonance imaging, and functional near-infrared spectroscopy. Furthermore, we critically compare and discuss these advanced implicit techniques in the context of food sensory research and then accordingly propose prospects. Ultimately, we conclude that implicit measures should be complemented by traditional explicit measures to capture responses beyond preference. Facial analysis technologies offer a more objective reflection of sensory perception and attitudes toward food, whereas neuroimaging techniques provide valuable insight into the implicit physiological responses during food consumption. To enhance the interpretability and generalizability of implicit measurement results, further sensory studies are needed. Looking ahead, the combination of different methodological techniques in real-life situations holds promise for consumer sensory science in the field of food research.


Assuntos
Preferências Alimentares , Alimentos , Preferências Alimentares/fisiologia , Preferências Alimentares/psicologia , Comportamento do Consumidor , Percepção
4.
Biomed Pharmacother ; 174: 116440, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518605

RESUMO

Rheumatoid arthritis (RA) is a complex autoimmune inflammatory rheumatic disease characterized by an imbalance between immunological reactivity and immune tolerance. Regulatory T cells (Tregs), which play a crucial role in controlling ongoing autoimmunity and maintaining peripheral tolerance, have shown great potential for the treatment of autoimmune inflammatory rheumatic diseases such as RA. This review aims to provide an updated summary of the latest insights into Treg-targeting techniques in RA. We focus on current therapeutic strategies for targeting Tregs based on discussing their subsets, surface markers, suppressive function, and signaling pathways in RA.


Assuntos
Artrite Reumatoide , Biomarcadores , Transdução de Sinais , Linfócitos T Reguladores , Humanos , Artrite Reumatoide/imunologia , Artrite Reumatoide/tratamento farmacológico , Linfócitos T Reguladores/imunologia , Animais , Biomarcadores/metabolismo
5.
J Mater Chem B ; 12(14): 3533-3542, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526339

RESUMO

Fluorescent nanodiamonds (FNDs) are carbon nanoparticles containing a dense ensemble of nitrogen-vacancy defects as color centers. These centers have exceptional photostability and unique quantum properties, making them useful for ultrasensitive biosensing applications. This work employed FNDs conjugated with antibodies as magneto-optical immunosensors for tuberculosis (TB) diagnostics using competitive spin-enhanced lateral flow immunoassay (SELFIA). ESAT6 (6-kDa early secretory antigenic target) of Mycobacterium tuberculosis is a clinical marker of TB. We evaluated the assay's performance using the recombinant ESAT6 antigen and its antibodies noncovalently coated on FNDs. A detection limit of ∼0.02 ng mL-1 was achieved with the lateral flow membrane strip pre-structured with a narrow channel of 1 mm width. Adopting a cut-off value of 24.0 ng mm-1 for 100-nm FNDs on the strips, the method detected 49 out of 50 clinical samples with Mycobacterium tuberculosis complexes. In contrast, none of the assays for 10 clinical samples with non-tuberculous mycobacteria (NTM) isolates exhibited the presence of ESAT6. These results suggest that the SELFIA platform is applicable for TB detection and can differentiate TB from NTM infections, which also affect the human respiratory system. The FND-enabled immunosensing techniques are versatile and promising for early detection of TB and other diseases, opening a new avenue for biomedical applications of carbon-based nanomaterials.


Assuntos
Técnicas Biossensoriais , Mycobacterium tuberculosis , Nanodiamantes , Tuberculose , Humanos , Imunoensaio , Tuberculose/diagnóstico , Corantes , Anticorpos
6.
Thorac Cancer ; 15(11): 867-877, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38419563

RESUMO

BACKGROUND: This retrospective study aimed to evaluate the precision and safety outcomes of image-guided lung percutaneous thermal ablation (LPTA) methods, focusing on radiofrequency ablation (RFA) and microwave ablation (MWA). The study utilized an innovative angle reference guide to facilitate these techniques in the treatment of lung tumors. METHODS: This study included individuals undergoing LPTA with the assistance of laser angle guide assembly (LAGA) at our hospital between April 2011 and March 2021. We analyzed patient demographics, tumor characteristics, procedure details, and complications. Logistic regressions were employed to assess risk factors associated with complications. RESULTS: A total of 202 patients underwent ablation for 375 lung tumors across 275 sessions involving 495 ablations. Most procedures used RFA, especially in the right upper lobe, and the majority of ablations were performed in the prone position (49.7%). Target lesions were at a median depth of 39.3 mm from the pleura surface, and remarkably, 91.9% required only a single puncture. Complications occurred in 31.0% of ablations, with pneumothorax being the most prevalent (18.3%), followed by pain (12.5%), sweating (6.5%), fever (5.0%), cough (4.8%), hemothorax (1.6%), hemoptysis (1.2%), pleural effusion (2.0%), skin burn (0.6%), and air emboli (0.2%). The median procedure time was 21 min. Notably, smoking/chronic obstructive pulmonary disease emerged as a significant risk factor for complications. CONCLUSION: The LAGA-assisted LPTA enhanced safety by improving accuracy and reducing risks. Overall, this investigation contributes to the ongoing efforts to refine and improve the clinical application of these thermal ablation techniques in the treatment of lung tumors.


Assuntos
Ablação por Cateter , Hipertermia Induzida , Neoplasias Pulmonares , Humanos , Estudos Retrospectivos , Neoplasias Pulmonares/patologia , Pulmão/patologia , Tomografia Computadorizada por Raios X/métodos , Ablação por Cateter/métodos , Resultado do Tratamento
7.
J Agric Food Chem ; 71(42): 15884-15893, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37816197

RESUMO

The impacts of high milk somatic cell count (SCC) on different milk fractions are not well understood. In this study, proteins in milk exosomes, milk fat globule membrane (MFGM), and whey from cows with low (<105 cells/mL, CG) and high SCC (>5 × 105 cells/mL, HSG) were identified using a tandem mass tag proteomic approach. In total, 1568, 2160, and 1002 proteins were identified, with 65, 552, and 98 proteins being altered by high SCC in exosomes, MFGM, and whey, respectively. With high SCC, the exosome marker (ACTB) was increased in the exosomes of HSG. The main MFGM proteins (BTN1A1, PLIN3, FABP3, and MFGE8) and functional proteins (MUC1, IGSF5, TLR5, and CD36/14) were decreased, while the lipid/energy metabolism-related proteins were increased in the MFGM of HSG. The glycolysis-related proteins were increased in the whey of HSG. Also, the host defense/inflammation-related proteins were changed in three fractions under high SCCs. MFGM was the most sensitive fraction to a high SCC, followed by whey. These findings provide guidance for the early detection of unhealthy mammary glands.


Assuntos
Proteínas de Membrana , Proteoma , Animais , Feminino , Bovinos , Proteoma/genética , Proteoma/metabolismo , Proteômica , Proteínas do Leite/metabolismo , Glicolipídeos , Gotículas Lipídicas/metabolismo , Proteínas do Soro do Leite , Contagem de Células
8.
Animals (Basel) ; 13(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37685037

RESUMO

Dairy mastitis is an inflammatory reaction caused by mechanical injury and stress within the mammary gland, during which microbial changes and abnormal lipid metabolism occur. However, the underlying mechanism is still unclear. The present study used a combination of 16S rDNA sequencing technology and lipidomics techniques to reveal the effects of mastitis on lactic microbiota and metabolites in the milk of dairy cows. Twenty multiparous Holstein dairy cows (2-3 parities) with an average body weight of 580 ± 30 kg were selected for this study. The dairy cows were allocated to control group (<5 × 104 cells /mL)) and mastitis group (>5 × 106 cells /mL) based on the somatic cell count. The results showed that mastitis caused a decrease trend in milk production (p = 0.058). The results of the 16 s sequencing indicated a significant decrease (p < 0.05) in the number of Proteobacteria, Tenericutes colonized in mastitis milk, and the number of Firmicutes, Bacteroidetes and Actinobacteria communities increased significantly (p < 0.05). The lipidomics results revealed that the changes in lipid content in mastitis milk were correlated with arachidonic acid metabolism, α -linolenic acid metabolism and glycerol phospholipid metabolism. The results showed that mastitis may cause abnormal lipid metabolism in milk by regulating the diversity of milk microflora, and ultimately affect the milk quality.

9.
Nano Lett ; 23(21): 9811-9816, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37708490

RESUMO

Extreme ultraviolet (EUV) radiation with wavelengths of 10-121 nm has drawn considerable attention recently for its use in photolithography to fabricate nanoelectronic chips. This study demonstrates, for the first time, fluorescent nanodiamonds (FNDs) with nitrogen-vacancy (NV) centers as scintillators to image and characterize EUV radiations. The FNDs employed are ∼100 nm in size; they form a uniform and stable thin film on an indium-tin-oxide-coated slide by electrospray deposition. The film is nonhygroscopic and photostable and can emit bright red fluorescence from NV0 centers when excited by EUV light. An FND-based imaging device has been developed and applied for beam diagnostics of 50 nm and 13.5 nm synchrotron radiations, achieving a spatial resolution of 30 µm using a film of ∼1 µm thickness. The noise equivalent power density is 29 µW/(cm2 Hz1/2) for the 13.5 nm radiation. The method is generally applicable to imaging EUV radiation from different sources.

10.
Anim Nutr ; 15: 1-9, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37701042

RESUMO

Eco-friendly and efficient strategies for eliminating cadmium (Cd) phytoremediation plant residues are needed. The present study investigated the feasibility of feeding Cd accumulator maize to beef cattle. In total, 20 cattle at 6 months of age were selected and randomly allocated into two groups fed with 85.82% (fresh basis) Cd accumulator maize (CAM) or normal maize (control [Con]) silage diets for 107 d. Feeding CAM did not affect the body weight (P = 0.24), while it decreased feed intake and increased feed efficiency of beef cattle (P < 0.01). Feeding CAM increased serum concentrations of immunoglobulin A and G, complement 3 and 4, blood urea nitrogen, and low-density lipoprotein cholesterol, decreased serum concentrations of interleukin-6 and lipopolysaccharide (P < 0.05), and caused wider lumens in the renal tubules. The Cd residue in meat was 7 µg/kg beyond the restriction for human food. In the muscle, the unsaturated fatty acids (t11C18:1 and C20:4), Lys, Arg, Pro, and Cys were decreased, while the saturated fatty acids (C10:0, C12:0, and C17:0) and Leu were increased (P < 0.05). Therefore, at the current feeding level, phytoremediation maize increased the feed efficiency of beef cattle, but did present risks to cattle health and production safety, and decreased the meat nutrition and flavor. Further research must be performed to determine whether a lower proper dose of phytoremediation maize and an appropriate feeding period may be possible to ensure no risk to cattle health and the supply of safe meat for humans.

11.
Nanomedicine (Lond) ; 18(16): 1045-1059, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37610004

RESUMO

Background: The use of nanodiamonds (NDs) and fluorescent nanodiamonds (FNDs) as nonallergenic biocompatible additives in incomplete Freund's adjuvant (IFA) to elicit immune responses in vivo was investigated. Methods: C57BL/6 mice were immunized with chicken egg ovalbumin (OVA) in IFA and also OVA-conjugated NDs (or OVA-conjugated FNDs) in IFA to produce antibodies. OVA-expressing E.G7 lymphoma cells and OVA-negative EL4 cells were inoculated in mice to induce tumor formation. Results: The new formulation significantly enhanced immune responses and thus disease resistance. It exhibited specific therapeutic activities, effectively inhibiting the growth of E.G7 tumor cells in mice over 35 days. Conclusion: The high biocompatibility and multiple functionalities of NDs/FNDs render them applicable as active and trackable vaccine adjuvants and antitumor agents.


Assuntos
Nanodiamantes , Animais , Camundongos , Camundongos Endogâmicos C57BL , Emulsões , Ovalbumina , Corantes , Vacinação
12.
Anal Chem ; 95(32): 12080-12088, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37534668

RESUMO

Nanodiamonds (NDs) are carbon nanoparticles with a large refractive index, a high density, and exceptional chemical stability. When excited by green light, they can emit bright red fluorescence from implanted nitrogen-vacancy (NV) centers. Taking advantage of these properties, we have developed antibody-conjugated NDs as in vitro diagnostic sensors for two complementary assays: particle-enhanced turbidimetric immunoassay (PETIA) and spin-enhanced lateral flow immunoassay (SELFIA). To achieve this goal, monocrystalline diamond powders (∼100 nm in diameter) with or without NV implantation were first treated in molten KNO3 to reduce their size and shape inhomogeneity, followed by surface carboxylation in strong oxidative acids and non-covalent conjugation with antibodies in water. PETIA and SELFIA were carried out separately with a microplate reader and a magnetically modulated fluorescence analyzer. Using C-reactive protein (CRP) as the target antigen, we found that anti-CRP-conjugated NDs exhibited high colloidal stability over 1 month at 4 °C in buffer solution. The limits of detection for 3 µL of CRP sample solution were 0.06 µg/mL and 1 ng/mL with variation coefficients of less than 10 and 15% for PETIA and SELFIA, respectively. These two methods together provide a detection range of 1 ng/mL-10 µg/mL, potentially useful for clinical applications. This work represents the first practical use of rounded monocrystalline NDs as in vitro diagnostic reagents.


Assuntos
Técnicas Biossensoriais , Imunoconjugados , Nanodiamantes , Nanodiamantes/química , Imunoensaio , Diamante , Nitrogênio/química , Anticorpos
13.
ACS Nano ; 17(17): 16491-16500, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37594320

RESUMO

Nitrogen vacancy (NV) centers in fluorescent nanodiamonds (FNDs) draw widespread attention as quantum sensors due to their room-temperature luminescence, exceptional photo- and chemical stability, and biocompatibility. For bioscience applications, NV centers in FNDs offer high-spatial-resolution capabilities that are unparalleled by other solid-state nanoparticle emitters. On the other hand, pursuits to further improve the optical properties of FNDs have reached a bottleneck, with intense debate in the literature over which of the many factors are most pertinent. Here, we describe how substantial progress can be achieved using a correlative transmission electron microscopy and photoluminescence (TEMPL) method that we have developed. TEMPL enables a precise correlative analysis of the fluorescence brightness, size, and shape of individual FND particles. Augmented with machine learning, TEMPL can be used to analyze a large, statistically meaningful number of particles. Our results reveal that FND fluorescence is strongly dependent on particle shape, specifically, that thin, flake-shaped particles are up to several times brighter and that fluorescence increases with decreasing particle sphericity. Our theoretical analysis shows that these observations are attributable to the constructive interference of light waves within the FNDs. Our findings have significant implications for state-of-the-art sensing applications, and they offer potential avenues for improving the sensitivity and resolution of quantum sensing devices.

14.
Talanta ; 265: 124892, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37451119

RESUMO

Avian influenza virus (AIV) is a zoonotic virus that can be transmitted from animals to humans. Although human infections are rare, the virus has a high mortality rate when contracted. Appropriate detection methods are thus crucial for combatting this pathogen. There is a growing demand for rapid, selective, and accurate methods of identifying the virus. Numerous biosensors have been designed and commercialized to detect AIV. However, they all have considerable shortcomings. Nanotechnology offers a new way forward. Nanomaterials produce more eco-friendly, rapid, and portable diagnostic systems. They also exhibit high sensitivity and selectivity while achieving a low detection limit (LOD). This paper reviews state-of-the-art nanomaterial-based biosensors for AIV detection, such as those composed of quantum dots, gold, silver, carbon, silica, nanodiamond, and other nanoparticles. It also offers insight into potential trial protocols for creating more effective methods of identifying AIV and discusses key issues associated with developing nanomaterial-based biosensors.


Assuntos
Técnicas Biossensoriais , Vírus da Influenza A , Influenza Aviária , Nanopartículas , Nanoestruturas , Animais , Humanos , Influenza Aviária/diagnóstico , Técnicas Biossensoriais/métodos
15.
Front Genet ; 14: 1136483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388939

RESUMO

In various cross-sectional and longitudinal studies, exercise has been associated with cardiometabolic outcomes, including high-density lipoprotein (HDL) cholesterol. Exercise-induced changes in HDL cholesterol seem to be affected by genetic polymorphisms. In this study, we examined whether variant APOE rs7412 is involved in the association between HDL cholesterol and exercise. From adults assessed in Taiwan Biobank (TWB) between 2008 and 2019, we analyzed data from 57,638 normolipidemic subjects. To examine the association between exercise, APOE rs7412, and HDL cholesterol, a multiple linear regression model was used. A higher HDL was associated with both aerobic exercise (regression coefficient [mg/dL] beta- (ß), 1.112; 95% confidence interval (CI); 0.903-1.322) and resistance exercise (ß, 2.530; 95% CI, 2.093-2.966). In comparison with the APOE rs7412-CC genotype, the ß was 2.589 (95% CI, 2.329-2.848) among those with the CT + TT genotype. Compared to adults who had the CC genotype and did not exercise (the CC/no exercise group), the ß-coefficient determined for the different genotype and exercise groups was 1.135 (95% CI, 0.911-1.359) for the CC genotype and aerobic exercise group, 2.753 (95% CI, 2.283-3.322) for the CC genotype and resistance exercise group, 2.705 (95% CI, 2.390-3.020) for the CT + TT genotype and no exercise group, 3.682 (95% CI, 3.218-4.146) for the CT + TT genotype and aerobic exercise group, and 3.855 (95% CI, 2.727-4.982) for the CT + TT genotype and resistance exercise group, respectively. This study demonstrates that self-reported aerobic and resistance exercise both raised HDL levels, yet resistance exercise was associated with a greater increase, particularly among Taiwanese subjects carrying the APOE rs7412-CT+TT genotype.

16.
Nanomaterials (Basel) ; 13(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37242062

RESUMO

Sodium hypochlorite (NaOCl) and ethylenediaminetetraacetic acid (EDTA) are commonly recommended for effectively removing organic and inorganic components in the smear layer. This layer is found on root canal walls after root canal instrumentation. However, high-concentration EDTA reduces the strength of dentin and the dissolution efficacy of organic substances in NaOCl solution. The objective of this study was to investigate the efficacy of applying nano and submicron diamonds in irrigation solutions with sonic and ultrasonic oscillation for removing the smear layer during endodontic treatment. Extracted single-rooted human teeth were instrumented with ProTaper® Gold (Dentsply Sirona) nickel-titanium rotary instruments. Subsequently, each canal was irrigated with 3% NaOCl, 17% EDTA, distilled water, and 10-1000 nm-sized nano and submicron diamond irrigation solutions, respectively. Sonic and ultrasonic instruments were compared for oscillating the irrigation solutions. The teeth were processed for scanning electron microscopy to observe the efficiency of smear layer removal on the canal walls. Our results indicated that diamond sizes of 50 nm and above irrigation solutions showed significant effectiveness in removing the smear layer following the oscillation of sonic instruments for 10 s. Ultrasonic assisted 500 nm and 1000 nm diamond solutions significantly differed from the other diamond-sized solution in their ability to remove the smear layer. These results suggest that sonic and ultrasonic oscillation with specific sizes of nano and submicron diamond irrigation solution can be used as an alternative approach to removing the smear layer during endodontic treatment. The potential clinical application of root canal treatments can be expected.

17.
J Environ Manage ; 343: 118252, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37247544

RESUMO

The study aimed to investigate the PM2.5 variations in different periods of COVID-19 control measures in Northern Taiwan from Quarter 1 (Q1) 2020 to Quarter 2 (Q2) 2021. PM2.5 sources were classified based on long-range transport (LRT) or local pollution (LP) in three study periods: one China lockdown (P1), and two restrictions in Taiwan (P2 and P3). During P1 the average PM2.5 concentrations from LRT (LRT-PM2.5-P1) were higher at Fuguei background station by 27.9% and in the range of 4.9-24.3% at other inland stations compared to before P1. The PM2.5 from LRT/LP mix or pure LP (Mix/LP-PM2.5-P1) was also higher by 14.2-39.9%. This increase was due to higher secondary particle formation represented by the increase in secondary ions (SI) and organic matter in PM2.5-P1 with the largest proportion of 42.17% in PM2.5 from positive matrix factorization (PMF) analysis. A similar increasing trend of Mix/LP-PM2.5 was found in P2 when China was still locked down and Taiwan was under an early control period but the rapidly increasing infected cases were confirmed. The shift of transportation patterns from public to private to avoid virus infection explicated the high correlation of the increasing infected cases with the increasing PM2.5. In contrast, the decreasing trend of LP-PM2.5-P3 was observed in P3 with the PM2.5 biases of ∼45% at all the stations when China was not locked down but Taiwan implemented a semi-lockdown. The contribution of gasoline vehicle sources in PM2.5 was reduced from 20.3% before P3 to 10% in P3 by chemical signatures and source identification using PMF implying the strong impact of strict control measures on vehicle emissions. In summary, PM2.5 concentrations in Northern Taiwan were either increased (P1 and P2) or decreased (P3) during the COVID-19 pandemic depending on control measures, source patterns and meteorological conditions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Humanos , Poluentes Atmosféricos/análise , Taiwan/epidemiologia , Material Particulado/análise , COVID-19/epidemiologia , Pandemias , Controle de Doenças Transmissíveis , Poluição do Ar/análise , Emissões de Veículos/análise , Monitoramento Ambiental
18.
Front Med (Lausanne) ; 10: 1178041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37144031

RESUMO

Background: Bacterial coinfections have been widely recognized in adults with coronavirus disease 2019 (COVID-19). However, bacterial coinfections in hospitalized children with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have not been sufficiently researched. This study aimed to determine the clinical presentations and risk factors for bacterial coinfections of pediatric inpatients during the SARS-CoV-2 Omicron BA.2 variant pandemic. Methods: This retrospective, observational study included patients younger than 18 years of age who were hospitalized for COVID-19 confirmed by polymerase chain reaction (PCR) or antigen rapid tests during the SARS-CoV-2 Omicron BA.2 variant pandemic. Data and outcomes of these patients with or without bacterial coinfections were compared. Results: During this study period, 161 children with confirmed COVID-19 were hospitalized. Twenty-four had bacterial coinfections. The most frequently reported concurrent diagnosis was bacterial enteritis, followed by lower respiratory tract infections. Children with bacterial coinfections had higher white blood cell (WBC) counts and PCR cycle threshold values. The bacterial coinfection group comprised a relatively greater proportion of patients who required high-flow nasal cannula oxygen and remdesivir. The length of stay in the hospital and that in the intensive care unit were longer for children with COVID-19 with bacterial coinfections. Mortality was not observed in either group. Abdominal pain, diarrhea, and comorbidity with neurologic illnesses were risk factors for bacterial coinfections with COVID-19. Conclusion: This study provides clinicians with reference points for the detection of COVID-19 in children and its possible association with bacterial infections. Children with COVID-19 and neurologic diseases who present with abdominal pain or diarrhea are at risk of bacterial coinfections. Prolonged fever duration and higher PCR test cycle threshold values, WBC levels, and high-sensitivity C-reactive protein (hsCRP) levels may indicate bacterial coinfections in children with COVID-19.

19.
Anal Chem ; 94(51): 17819-17826, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36512513

RESUMO

Dengue fever is a global mosquito-borne viral infectious disease that has, in recent years, rapidly spread to almost all regions of the world. Lack of vaccination and directed treatment makes detection at the infection's early stages extremely important for disease prevention and clinical care. In this paper, we developed a rapid and highly sensitive dengue detection tool using a novel platform of diagnosis, called spin-enhanced lateral flow immunoassay (SELFIA) with a fluorescent nanodiamond (FND) as a reporter. Taking advantage of the unique magneto-optical properties of negatively charged nitrogen-vacancy centers in the FND, the SELFIA platform utilizes alternating electromagnetic fields to modulate signals from FND's fluorescence to provide sensitive and specific results. With sandwich SELFIA, we could efficiently detect all four dengue non-structural protein (NS1) serotypes (DV1, DV2, DV3, and DV4). The lowest detection concentration of the dengue NS1 antigens varied from 0.1 to 1.3 ng/mL, which is among the lowest limits of detection to date. The FND-based SELFIA technique is up to 500 and 5000 times more sensitive than carbon black and conventional gold nanoparticles, respectively. By using different anti-NS1 antibodies, we could differentiate the NS1 antigen serotypes contained in the tested samples via three simultaneous assays. Proposed SELFIA allows for both qualitative and quantitative differentiation between different NS1 protein serotypes, which will assist in the development of a highly sensitive and specific detection platform for dengue screening that has the potential to detect the disease at its early stages, especially in high-risk and limited-resource areas.


Assuntos
Vírus da Dengue , Dengue , Nanopartículas Metálicas , Animais , Humanos , Sorogrupo , Ouro , Proteínas não Estruturais Virais , Imunoensaio/métodos , Anticorpos Antivirais , Dengue/diagnóstico , Sensibilidade e Especificidade , Ensaio de Imunoadsorção Enzimática/métodos
20.
J Phys Chem Lett ; 13(48): 11280-11287, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36449371

RESUMO

Fluorescent nanodiamonds contain nitrogen-vacancy (NV) centers as quantum defects. When exposed to a continuous-wave 325 nm laser or a femtosecond 344 nm laser, the particles emit red fluorescence from NV0 centers at ∼620 nm. Power dependence measurements of the emission strength revealed a predominantly linear behavior at the laser peak intensity lower than 1 GW·cm-2, contributed mainly by photoexcitation of electrons from the valence band of diamond to the NV0 centers, followed by relaxation via electron-hole recombination. In the higher power regions, however, nonresonant two-photon interband excitation of the diamond matrix dominates the photoluminescence processes. Best fits of the experimental data to semiempirical models revealed an ionization coefficient of ∼1 cm-1 for the one-photon valence-to-defect excitation and a saturation intensity of 180 ± 60 GW·cm-2 for the two-photon interband excitation. The study provides new insight into the photoionization of NV0 centers and the interband excitation properties of diamond in the UV region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...