Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Alzheimer Res ; 17(4): 329-343, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31820698

RESUMO

Mitochondria absorb calcium (Ca2+) at the expense of the electrochemical gradient generated during respiration. The influx of Ca2+ into the mitochondrial matrix helps maintain metabolic function and results in increased cytosolic Ca2+ during intracellular Ca2+ signaling. Mitochondrial Ca2+ homeostasis is tightly regulated by proteins located in the inner and outer mitochondrial membranes and by the cross-talk with endoplasmic reticulum Ca2+ signals. Increasing evidence indicates that mitochondrial Ca2+ overload is a pathological phenotype associated with Alzheimer's Disease (AD). As intracellular Ca2+ dysregulation can be observed before the appearance of typical pathological hallmarks of AD, it is believed that mitochondrial Ca2+ overload may also play an important role in AD etiology. The high mitochondrial Ca2+ uptake can easily compromise neuronal functions and exacerbate AD progression by impairing mitochondrial respiration, increasing reactive oxygen species formation and inducing apoptosis. Additionally, mitochondrial Ca2+ overload can damage mitochondrial recycling via mitophagy. This review will discuss the molecular players involved in mitochondrial Ca2+ dysregulation and the pharmacotherapies that target this dysregulation. As most of the current AD therapeutics are based on amyloidopathy, tauopathy, and the cholinergic hypothesis, they achieve only symptomatic relief. Thus, determining how to reestablish mitochondrial Ca2+ homeostasis may aid in the development of novel AD therapeutic interventions.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/administração & dosagem , Sinalização do Cálcio/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Mitocôndrias/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/metabolismo
2.
Curr Alzheimer Res ; 17(12): 1072-1087, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33463469

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder. Although the pathological hallmarks of AD have been identified, the derived therapies cannot effectively slow down or stop disease progression; hence, it is likely that other pathogenic mechanisms are involved in AD pathogenesis. Intracellular calcium (Ca2+) dyshomeostasis has been consistently observed in AD patients and numerous AD models and may emerge prior to the development of amyloid plaques and neurofibrillary tangles. Thus, intracellular Ca2+ disruptions are believed to play an important role in AD development and could serve as promising therapeutic intervention targets. One of the disrupted intracellular Ca2+ signaling pathways manifested in AD is attenuated storeoperated Ca2+ entry (SOCE). SOCE is an extracellular Ca2+ entry mechanism mainly triggered by intracellular Ca2+ store depletion. Maintaining normal SOCE function not only provides a means for the cell to replenish ER Ca2+ stores but also serves as a cellular signal that maintains normal neuronal functions, including excitability, neurogenesis, neurotransmission, synaptic plasticity, and gene expression. However, normal SOCE function is diminished in AD, resulting in disrupted neuronal spine stability and synaptic plasticity and the promotion of amyloidogenesis. Mounting evidence suggests that rectifying diminished SOCE in neurons may intervene with the progression of AD. In this review, the mechanisms of SOCE disruption and the associated pathogenic impacts on AD will be discussed. We will also highlight the potential therapeutic targets or approaches that may help ameliorate SOCE deficits for AD treatment.


Assuntos
Doença de Alzheimer/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/patologia , Humanos , Neurônios/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA