Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38480909

RESUMO

Thalamic abnormalities have been repeatedly implicated in the pathophysiology of schizophrenia and other neurodevelopmental disorders. Uncovering the etiology of thalamic abnormalities and how they may contribute to illness phenotypes faces at least two obstacles. First, the typical developmental trajectories of thalamic nuclei and their association with cognition across the lifespan are largely unknown. Second, modest effect sizes indicate marked individual differences and pose a significant challenge to personalized medicine. To address these knowledge gaps, we characterized the development of thalamic nuclei volumes using normative models generated from the Human Connectome Project Lifespan datasets (5-100+ years), then applied them to an independent clinical cohort to determine the frequency of thalamic volume deviations in people with schizophrenia (17-61 years). Normative models revealed diverse non-linear age effects across the lifespan. Association nuclei exhibited negative age effects during youth but stabilized in adulthood until turning negative again with older age. Sensorimotor nuclei volumes remained relatively stable through youth and adulthood until also turning negative with older age. Up to 18% of individuals with schizophrenia exhibited abnormally small (i.e., below the 5th centile) mediodorsal and pulvinar volumes, and the degree of deviation, but not raw volumes, correlated with the severity of cognitive impairment. While case-control differences are robust, only a minority of patients demonstrate unusually small thalamic nuclei volumes. Normative modeling enables the identification of these individuals, which is a necessary step toward precision medicine.

3.
Biol Psychiatry ; 92(5): 385-395, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35680432

RESUMO

BACKGROUND: Dysconnectivity theories, combined with advances in fundamental cognitive neuroscience, have led to increased interest in characterizing cerebellar abnormalities in psychosis. Smaller cerebellar gray matter volume has been found in schizophrenia spectrum disorders. However, the course of these deficits across illness stage, specificity to schizophrenia (vs. psychosis more broadly), and relationship to clinical phenotypes, primarily cognitive impairment, remain unclear. METHODS: The Spatially Unbiased Infratentorial toolbox, a gold standard for analyzing human neuroimaging data of the cerebellum, was used to quantify cerebellar volumes and conduct voxel-based morphometry on structural magnetic resonance images obtained from 574 individuals (249 schizophrenia spectrum, 108 bipolar with psychotic features, 217 nonpsychiatric control). Analyses examining diagnosis (schizophrenia spectrum, bipolar disorder), illness stage (early, chronic), and cognitive effects on cerebellum structure in psychosis were performed. RESULTS: Cerebellar structure in psychosis did not differ significantly from healthy participants, regardless of diagnosis and illness stage (effect size = 0.01-0.14). In contrast, low premorbid cognitive functioning was associated with smaller whole and regional cerebellum volumes, including cognitive (lobules VI and VII, Crus I, frontoparietal and attention networks) and motor (lobules I-IV, V, and X; somatomotor network) regions in psychosis (effect size = 0.36-0.60). These effects were not present in psychosis cohorts with average estimated premorbid cognition. CONCLUSIONS: Cerebellar structural abnormalities in psychosis are related to lower premorbid cognitive functioning implicating early antecedents, atypical neurodevelopment, or both in cerebellar dysfunction. Future research focused on identifying the impact of early-life risk factors for psychosis on the development of the cerebellum and cognition is warranted.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Transtorno Bipolar/complicações , Transtorno Bipolar/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Cognição , Humanos , Imageamento por Ressonância Magnética/métodos
4.
Artigo em Inglês | MEDLINE | ID: mdl-34655804

RESUMO

BACKGROUND: Thalamocortical white matter connectivity is disrupted in psychosis and is hypothesized to play a role in its etiology and associated cognitive impairment. Attenuated cognitive symptoms often begin in adolescence, during a critical phase of white matter and cognitive development. However, little is known about the development of thalamocortical white matter connectivity and its association with cognition. METHODS: This study characterized effects of age, sex, psychosis symptomatology, and cognition in thalamocortical networks in a large sample of youths (N = 1144, ages 8-22 years, 46% male) from the Philadelphia Neurodevelopmental Cohort, which included 316 typically developing youths, 330 youths on the psychosis spectrum, and 498 youths with other psychopathology. Probabilistic tractography was used to quantify percent total connectivity between the thalamus and six cortical regions and assess microstructural properties (i.e., fractional anisotropy) of thalamocortical white matter tracts. RESULTS: Overall, percent total connectivity of the thalamus was weakly associated with age and was not associated with psychopathology or cognition. In contrast, fractional anisotropy of all thalamocortical tracts increased significantly with age, was generally higher in males than females, and was lowest in youths on the psychosis spectrum. Fractional anisotropy of tracts linking the thalamus to prefrontal and posterior parietal cortices was related to better cognitive function across subjects. CONCLUSIONS: By characterizing the pattern of typical development and alterations in those at risk for psychotic disorders, this study provides a foundation for further conceptualization of thalamocortical white matter microstructure as a marker of neurodevelopment supporting cognition and an important risk marker for psychosis.


Assuntos
Transtornos Psicóticos , Substância Branca , Adolescente , Adulto , Anisotropia , Criança , Cognição , Feminino , Humanos , Masculino , Tálamo , Substância Branca/patologia , Adulto Jovem
5.
Neuroimage ; 243: 118562, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34506914

RESUMO

The thalamus is composed of multiple nuclei densely connected with the cortex in an organized manner, forming parallel thalamocortical networks critical to sensory, motor, and cognitive functioning. Thalamocortical circuit dysfunction has been implicated in multiple neurodevelopmental disorders, including schizophrenia, which also often exhibit sex differences in prevalence, clinical characteristics, and neuropathology. However, very little is known about developmental and sex effects on thalamocortical networks in youth. The present study characterized the effects of age, sex and psychosis symptomatology in anatomically constrained thalamocortical networks in a large community sample of youth (n = 1100, aged 8-21) from the Philadelphia Neurodevelopmental Cohort (PNC). Cortical functional connectivity of seven anatomically defined thalamic nuclear groups were examined: anterior, mediodorsal, ventral lateral, ventral posterolateral, pulvinar, medial and lateral geniculate nuclear groups. Age and sex effects were characterized using complementary thalamic region-of-interest (ROI) to cortical ROI and voxel-wise analyses. Effects of clinical symptomatology were analyzed by separating youth into three groups based on their clinical symptoms; typically developing youth (n = 298), psychosis spectrum youth (n = 320), and youth with other psychopathologies (n = 482). As an exploratory analysis, association with PRIME scores were used as a dimensional measure of psychopathology. Age effects were broadly characterized by decreasing connectivity with sensory/motor cortical areas, and increasing connectivity with heteromodal prefrontal and parietal cortical areas. This pattern was most pronounced for thalamic motor and sensory nuclei. Females showed greater connectivity between multiple thalamic nuclear groups and the visual cortex compared to males, while males showed greater connectivity with the inferior frontal and orbitofrontal cortices. Youth with psychosis spectrum symptoms showed a subtle decrease in thalamic connectivity with the premotor and prefrontal cortices. Across all youth, greater PRIME scores were associated with lower connectivity between the prefrontal cortex and mediodorsal thalamus. By characterizing typical development in anatomically constrained thalamocortical networks, this study provides an anchor for conceptualizing disruptions to the integrity of these networks observed in neurodevelopmental disorders.


Assuntos
Córtex Cerebral/fisiopatologia , Transtornos Psicóticos/fisiopatologia , Tálamo/fisiopatologia , Adolescente , Fatores Etários , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa , Vias Neurais/fisiopatologia , Philadelphia , Córtex Pré-Frontal/fisiopatologia , Pulvinar/fisiopatologia , Esquizofrenia/fisiopatologia , Córtex Sensório-Motor/fisiopatologia , Caracteres Sexuais , Adulto Jovem
6.
Schizophr Res ; 233: 101-110, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34215467

RESUMO

BACKGROUND: Schizophrenia can be understood as a disturbance of functional connections within brain networks. However, functional alterations that involve white matter (WM) specifically, or their cognitive correlates, have seldomly been investigated, especially during tasks. METHODS: Resting state and task fMRI images were acquired on 84 patients and 67 controls. Functional connectivities (FC) between 46 WM bundles and 82 cortical regions were compared between the groups under two conditions (i.e., resting state and during working memory retention period). The FC density of each WM bundle was then compared between groups. Associations of FC with cognitive scores were evaluated. RESULTS: FC measures were lower in schizophrenia relative to controls for external capsule, cingulum (cingulate and hippocampus), uncinate fasciculus, as well as corpus callosum (genu and body) under the rest or the task condition, and were higher in the posterior corona radiata and posterior thalamic radiation during the task condition. FC for specific WM bundles was correlated with cognitive performance assessed by working memory and processing speed metrics. CONCLUSIONS: The findings suggest that the functional abnormalities in patients' WM are heterogeneous, possibly reflecting several underlying mechanisms such as structural damage, functional compensation and excessive effort on task, and that WM FC disruption may contribute to the impairments of working memory and processing speed. This is the first report on WM FC abnormalities in schizophrenia relative to controls and their cognitive associates during both rest and task and highlights the need to consider WM functions as components of brain functional networks in schizophrenia.


Assuntos
Disfunção Cognitiva , Esquizofrenia , Substância Branca , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Memória de Curto Prazo , Esquizofrenia/complicações , Esquizofrenia/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
7.
Transl Psychiatry ; 11(1): 346, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088895

RESUMO

The insula is a heterogeneous cortical region, comprised of three cytoarchitecturally distinct sub-regions (agranular, dysgranular, and granular), which traverse the anterior-posterior axis and are differentially involved in affective, cognitive, and somatosensory processing. Smaller insula volume is consistently reported in psychosis-spectrum disorders and is hypothesized to result, in part, from abnormal neurodevelopment. To better understand the regional and diagnostic specificity of insula abnormalities in psychosis, their developmental etiology, and clinical correlates, we characterized insula volume and morphology in a large group of adults with a psychotic disorder (schizophrenia spectrum, psychotic bipolar disorder) and a community-ascertained cohort of psychosis-spectrum youth (age 8-21). Insula volume and morphology (cortical thickness, gyrification, sulcal depth) were quantified from T1-weighted structural brain images using the Computational Anatomy Toolbox (CAT12). Healthy adults (n = 196), people with a psychotic disorder (n = 303), and 1368 individuals from the Philadelphia Neurodevelopmental Cohort (PNC) (381 typically developing (TD), 381 psychosis-spectrum (PS) youth, 606 youth with other psychopathology (OP)), were investigated. Insula volume was significantly reduced in adults with psychotic disorders and psychosis-spectrum youth, following an anterior-posterior gradient across granular sub-regions. Morphological abnormalities were limited to lower gyrification in psychotic disorders, which was specific to schizophrenia and associated with cognitive ability. Insula volume and thickness were associated with cognition, and positive and negative symptoms of psychosis. We conclude that smaller insula volume follows an anterior-posterior gradient in psychosis and confers a broad risk for psychosis-spectrum disorders. Reduced gyrification is specific to schizophrenia and may reflect altered prenatal development that contributes to cognitive impairment.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Adolescente , Adulto , Transtorno Bipolar/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Criança , Humanos , Imageamento por Ressonância Magnética , Transtornos Psicóticos/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Adulto Jovem
8.
Am J Psychiatry ; 177(12): 1159-1167, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32911995

RESUMO

OBJECTIVE: Thalamus models of psychosis implicate association nuclei in the pathogenesis of psychosis and mechanisms of cognitive impairment. Studies to date have provided conflicting findings for structural deficits specific to these nuclei. The authors sought to characterize thalamic structural abnormalities in psychosis and a neurodevelopmental cohort, and to determine whether nuclear volumes were associated with cognitive function. METHODS: Thalamic nuclei volumes were tested in a cross-sectional sample of 472 adults (293 with psychosis) and the Philadelphia Neurodevelopmental Cohort (PNC), consisting of 1,393 youths (398 with psychosis spectrum symptoms and 609 with other psychopathologies), using a recently developed, validated method for segmenting thalamic nuclei and complementary voxel-based morphometry. Cognitive function was measured with the Screen for Cognitive Impairment in Psychiatry in the psychosis cohort and the Penn Computerized Neurocognitive Battery in the PNC. RESULTS: The psychosis group had smaller pulvinar, mediodorsal, and, to a lesser extent, ventrolateral nuclei volumes compared with the healthy control group. Youths with psychosis spectrum symptoms also had smaller pulvinar volumes, compared with both typically developing youths and youths with other psychopathologies. Pulvinar volumes were positively correlated with general cognitive function. CONCLUSIONS: The study findings demonstrate that smaller thalamic association nuclei represent a neurodevelopmental abnormality associated with psychosis, risk for psychosis in youths, and cognitive impairment. Identifying specific thalamic nuclei abnormalities in psychosis has implications for early detection of psychosis risk and treatment of cognitive impairment in psychosis.


Assuntos
Transtornos Psicóticos/patologia , Núcleos Talâmicos/patologia , Adulto , Atrofia/patologia , Estudos de Casos e Controles , Cognição , Estudos Transversais , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Adulto Jovem
9.
Dev Cogn Neurosci ; 45: 100862, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32920279

RESUMO

Late childhood and early adolescence is characterized by substantial brain maturation which contributes to both adult-like and age-dependent resting-state network connectivity patterns. However, it remains unclear whether these functional network characteristics in children are subject to differential modulation by distinct cognitive demands as previously found in adults. We conducted network analyses on fMRI data from 60 children (aged 9-12) during resting and during three distinct tasks involving decision making, visual perception, and spatial working memory. Graph measures of network architecture, functional integration, and flexibility were calculated for each of the four states. During resting state, the children's network architecture was similar to that in young adults (N = 60, aged 20-23) but the degree of similarity was age- and network-dependent. During the task states, the children's whole-brain network exhibited enhanced integration in response to increased cognitive demand. Additionally, the frontoparietal network showed flexibility in connectivity patterns across states while networks implicated in motor and visual processing remained relatively stable. Exploratory analyses suggest different relationships between behavioral performance and connectivity profiles for the working memory and perceptual tasks. Together, our findings demonstrate state- and age-dependent features in functional network connectivity during late childhood, potentially providing markers for brain and cognitive development.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Imageamento por Ressonância Magnética/métodos , Vias Neurais/fisiologia , Fatores Etários , Criança , Feminino , Humanos , Masculino
10.
Schizophr Bull ; 46(5): 1062-1071, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32219397

RESUMO

BACKGROUND: Anatomical connectivity between the thalamus and cortex, including the prefrontal cortex (PFC), is abnormal in schizophrenia. Overlapping phenotypes, including deficits in executive cognitive abilities dependent on PFC-thalamic circuitry, suggest dysrupted thalamocortical anatomical connectivity may extend to psychotic bipolar disorder. We tested this hypothesis and examined the impact of illness stage to inform when in the illness course thalamocortical dysconnectivity emerges. METHODS: Diffusion-weighted imaging data were collected on 70 healthy individuals and 124 people with a psychotic disorder (schizophrenia spectrum = 75; psychotic bipolar disorder = 49), including 62 individuals in the early stage of psychosis. Anatomical connectivity between major divisions of the cortex and thalamus was quantified using probabilistic tractography and compared between groups. Associations between PFC-thalamic anatomical connectivity and executive cognitive abilities were examined using regression analysis. RESULTS: Psychosis was associated with lower PFC-thalamic and elevated somatosensory-thalamic anatomical connectivity. Follow-up analyses established that lower PFC-thalamic and elevated somatosensory-thalamic anatomical connectivity were present in both schizophrenia and psychotic bipolar disorder. Lower PFC-thalamic anatomical connectivity was also present in early-stage and chronic psychosis. Contrary to expectations, lower PFC-thalamic anatomical connectivity was not associated with impaired executive cognitive abilities. CONCLUSIONS: Altered thalamocortical anatomical connectivity, especially reduced PFC-thalamic connectivity, is a transdiagnostic feature of psychosis detectable in the early stage of illness. Further work is required to elucidate the functional consequences of the full spectrum of thalamocortical connectivity abnormalities in psychosis.

11.
Neuropsychopharmacology ; 44(12): 2143, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31477819

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Neuropsychopharmacology ; 44(12): 2136-2142, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185485

RESUMO

Working memory (WM) is impaired in psychotic disorders and linked to functional outcome. Most neurobiological models emphasize prefrontal cortex (PFC) dysfunction in the etiology of WM impairment. However, WM is composed of multiple processes, including encoding and maintenance, and the delineation of the neurobiology of these sub-processes has not been well characterized in schizophrenia and psychotic bipolar disorder. Functional MRI was obtained during an event-related spatial delayed match-to-sample task from 58 healthy individuals, 72 individuals with schizophrenia and 41 people with bipolar I disorder with psychotic features in order to: 1) characterize neural responses during encoding, maintenance and retrieval stages of WM using complementary region-of-interest and whole brain approaches; 2) determine whether schizophrenia and psychotic bipolar disorder exhibit similar abnormalities in WM-related brain function; and 3) elucidate the associations between WM-related brain function, task performance, and neuropsychological functioning. Both schizophrenia and psychotic bipolar disorder groups showed encoding- and maintenance-related impairments in the posterior parietal cortex (PPC) and frontal eye fields (FEF). BOLD response in the PPC and FEF, during encoding and maintenance respectively, was associated with task performance independent of group. Additionally, encoding-related activation in the PPC correlated with general neuropsychological functioning independent of group. Only encoding-related activation in the right ventral striatum differed between schizophrenia and psychotic bipolar disorder; individuals with schizophrenia showed significantly lower activation than both psychotic bipolar disorder and healthy groups. Our results are consistent with emerging evidence implicating PPC dysfunction in WM impairment and suggest interventions targeting neural activation in PPC may improve WM and neuropsychological functioning across psychotic disorders.


Assuntos
Transtorno Bipolar/fisiopatologia , Transtorno Bipolar/psicologia , Encéfalo/fisiopatologia , Memória de Curto Prazo/fisiologia , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória Espacial/fisiologia , Adulto Jovem
13.
Neuropsychologia ; 127: 158-170, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30849407

RESUMO

Visual processing in the primate brain is highly organized along the ventral visual pathway, although it is still unclear how categorical selectivity emerges in this system. While many theories have attempted to explain the pattern of visual specialization within the ventral occipital and temporal areas, the biased connectivity hypothesis provides a framework which postulates extrinsic connectivity as a potential mechanism in shaping the development of category selectivity. As the posterior parietal cortex plays a central role in visual attention, we examined whether the pattern of parietal connectivity with the face and scene processing regions is closely linked with the functional properties of these two visually selective networks in a cohort of 60 children ages 9 to 12. Functionally localized face and scene selective regions were used in deriving each visual network's resting-state functional connectivity. The children's face and scene processing networks appeared to show a weak network segregation during resting state, which was confirmed when compared to that of a group of gender and handedness matched adults. Parietal regions of these children showed differential connectivity with the face and scene networks, and the extent of this differential parietal-visual connectivity predicted individual differences in the degree of segregation between the two visual networks, which in turn predicted individual differences in visual perception performance. Finally, the pattern of parietal connectivity with the face processing network also predicted the foci of face-related activation in the right fusiform gyrus across children. These findings provide evidence that extrinsic connectivity with regions such as the posterior parietal cortex may have important implications in the development of specialized visual processing networks.


Assuntos
Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Vias Visuais/diagnóstico por imagem , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Adulto , Envelhecimento/psicologia , Atenção/fisiologia , Mapeamento Encefálico , Criança , Estudos de Coortes , Reconhecimento Facial/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Individualidade , Imageamento por Ressonância Magnética , Masculino , Desempenho Psicomotor/fisiologia
14.
Schizophr Res ; 210: 270-277, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30630706

RESUMO

Despite considerable evidence showing thalamus anatomy and connectivity abnormalities in schizophrenia, how these abnormalities are reflected in thalamus function during cognition is relatively understudied. Modulation of thalamic connectivity with the prefrontal cortex (PFC) is required for higher-order cognitive processes, which are often impaired in schizophrenia. To address this gap, we investigated how thalamus function and thalamus-PFC connectivity under different levels of cognitive demand may be disrupted in schizophrenia. Participants underwent fMRI scanning while performing an event-related two-alternative forced choice task under Single and Dual task conditions. In the Single task condition, participants responded either to a visual cue with a well-learned motor response, or an audio cue with a well-learned vocal response. In the Dual task condition, participants performed both tasks. Thalamic connectivity with task relevant regions of the PFC for each condition was measured using beta-series correlation. Individuals with schizophrenia demonstrated less modulation of both mediodorsal thalamus activation and thalamus-PFC connectivity with increased cognitive demand. In contrast, their ability to modulate PFC function during task performance was maintained. These results suggest that the pathophysiology of cognitive impairment in schizophrenia is associated with thalamus-PFC circuitry and suggests that the thalamus, along with the PFC, should be a focus of investigation.


Assuntos
Disfunção Cognitiva/fisiopatologia , Conectoma , Função Executiva/fisiologia , Rede Nervosa/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Desempenho Psicomotor/fisiologia , Esquizofrenia/fisiopatologia , Tálamo/fisiopatologia , Adulto , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Esquizofrenia/complicações , Esquizofrenia/diagnóstico por imagem , Tálamo/diagnóstico por imagem
15.
Neuron ; 98(5): 886-903, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29879391

RESUMO

The impaired response inhibition and salience attribution (iRISA) model proposes that impaired response inhibition and salience attribution underlie drug seeking and taking. To update this model, we systematically reviewed 105 task-related neuroimaging studies (n > 15/group) published since 2010. Results demonstrate specific impairments within six large-scale brain networks (reward, habit, salience, executive, memory, and self-directed networks) during drug cue exposure, decision making, inhibitory control, and social-emotional processing. Addicted individuals demonstrated increased recruitment of these networks during drug-related processing but a blunted response during non-drug-related processing, with the same networks also being implicated during resting state. Associations with real-life drug use, relapse, therapeutic interventions, and the relevance to initiation of drug use during adolescence support the clinical relevance of the results. Whereas the salience and executive networks showed impairments throughout the addiction cycle, the reward network was dysregulated at later stages of abuse. Effects were similar in alcohol, cannabis, and stimulant addiction.


Assuntos
Encéfalo/fisiopatologia , Inibição Psicológica , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Alcoolismo/diagnóstico por imagem , Alcoolismo/fisiopatologia , Transtornos Relacionados ao Uso de Anfetaminas/diagnóstico por imagem , Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Encéfalo/diagnóstico por imagem , Sinais (Psicologia) , Tomada de Decisões , Função Executiva , Neuroimagem Funcional , Humanos , Abuso de Maconha/diagnóstico por imagem , Abuso de Maconha/fisiopatologia , Memória , Transtornos Relacionados ao Uso de Substâncias/diagnóstico por imagem
16.
Artigo em Inglês | MEDLINE | ID: mdl-29352027

RESUMO

Impairments in response inhibition and salience attribution (iRISA) have been proposed to underlie the clinical symptoms of drug addiction as mediated by cortico-striatal-thalamo-cortical networks. The bulk of evidence supporting the iRISA model comes from neuroimaging research that has focused on cortical and striatal influences with less emphasis on the role of the thalamus. Here, we highlight the importance of the thalamus in drug addiction, focusing on animal literature findings on thalamic nuclei in the context of drug-seeking, structural and functional changes of the thalamus as measured by imaging studies in human drug addiction, particularly during drug cue and non-drug reward processing, and response inhibition tasks. Findings from the animal literature suggest that the paraventricular nucleus of the thalamus, the lateral habenula and the mediodorsal nucleus may be involved in the reinstatement, extinction and expression of drug-seeking behaviours. In support of the iRISA model, the human addiction imaging literature demonstrates enhanced thalamus activation when reacting to drug cues and reduced thalamus activation during response inhibition. This pattern of response was further associated with the severity of, and relapse in, drug addiction. Future animal studies could widen their field of focus by investigating the specific role(s) of different thalamic nuclei in different phases of the addiction cycle. Similarly, future human imaging studies should aim to specifically delineate the structure and function of different thalamic nuclei, for example, through the application of advanced imaging protocols at higher magnetic fields (7 Tesla).This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.


Assuntos
Comportamento de Procura de Droga/fisiologia , Roedores/fisiologia , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Tálamo/fisiopatologia , Animais , Humanos , Transtornos Relacionados ao Uso de Substâncias/diagnóstico por imagem , Tálamo/diagnóstico por imagem
17.
Soc Cogn Affect Neurosci ; 12(9): 1511-1519, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992271

RESUMO

Negative emotionality (NE) refers to individual differences in the propensity to experience and react with negative emotions and is associated with increased risk of psychological disorder. However, research on the neural bases of NE has focused almost exclusively on amygdala activity during emotional face processing. This study broadened this framework by examining the relationship between observed NE in early childhood and subsequent neural responses to emotional faces in both the amygdala and the fusiform face area (FFA) in a late childhood/early adolescent sample. Measures of NE were obtained from children at age 3 using laboratory observations, and functional magnetic resonance imaging (fMRI) data were collected when these children were between the ages of 9 and 12 while performing a visual stimulus identity matching task with houses and emotional faces as stimuli. Multiple regression analyses revealed that higher NE at age 3 is associated with significantly greater activation in the left amygdala and left FFA but lower functional connectivity between these two regions during the face conditions. These findings suggest that those with higher early NE have subsequent alterations in both activity and connectivity within an extended network during face processing.


Assuntos
Tonsila do Cerebelo/diagnóstico por imagem , Temperamento , Lobo Temporal/diagnóstico por imagem , Adolescente , Envelhecimento/psicologia , Tonsila do Cerebelo/crescimento & desenvolvimento , Criança , Pré-Escolar , Depressão/psicologia , Face , Feminino , Humanos , Lactente , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Lobo Temporal/crescimento & desenvolvimento
18.
Dev Cogn Neurosci ; 17: 1-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26562059

RESUMO

Spatial working memory is a central cognitive process that matures through adolescence in conjunction with major changes in brain function and anatomy. Here we focused on late childhood and early adolescence to more closely examine the neural correlates of performance variability during this important transition period. Using a modified spatial 1-back task with two memory load conditions in an fMRI study, we examined the relationship between load-dependent neural responses and task performance in a sample of 39 youth aged 9-12 years. Our data revealed that between-subject differences in task performance was predicted by load-dependent deactivation in default network regions, including the ventral anterior cingulate cortex (vACC) and posterior cingulate cortex (PCC). Although load-dependent increases in activation in prefrontal and posterior parietal regions were only weakly correlated with performance, increased prefrontal-parietal coupling was associated with better performance. Furthermore, behavioral measures of executive function from as early as age 3 predicted current load-dependent deactivation in vACC and PCC. These findings suggest that both task positive and task negative brain activation during spatial working memory contributed to successful task performance in late childhood/early adolescence. This may serve as a good model for studying executive control deficits in developmental disorders.


Assuntos
Encéfalo/metabolismo , Função Executiva/fisiologia , Memória de Curto Prazo/fisiologia , Desempenho Psicomotor/fisiologia , Memória Espacial/fisiologia , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Feminino , Giro do Cíngulo/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Estimulação Luminosa/métodos , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...