Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 175(5): e14004, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882287

RESUMO

Rhizobacteria that produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCd) that inhibits ethylene production may mitigate stress damages. The objectives of this study were to examine whether a novel strain of ACCd-producing bacteria, Paraburkholderia aspalathi "WSF23," promotes plant tolerance to drought stress and post-stress recovery and determine changes in metabolic profiles in leaves and roots associated with the positive ACCd-bacteria effects in cool-season perennial grass species. Creeping bentgrass (Agrostis Stolonifera L. cv. "Penncross") plants were inoculated with P. aspalathi "WSF23" and exposed to drought by withholding irrigation for 35 days, followed by re-watering for 15 days in growth chambers. Inoculated plants demonstrated increased turf quality, canopy density, and root growth during drought stress and more rapid re-growth upon re-watering. Metabolomic analysis demonstrated that inoculation with P. aspalathi "WSF 23" increased the content of metabolites in the metabolic pathways related to stress defense, including osmoregulation, cell wall stability, and antioxidant protection in both leaves and roots, as well as nitrogen metabolism in roots of creeping bentgrass exposed to drought stress. The promotion of post-stress recovery by P. aspalathi "WSF 23" was mainly associated with enhanced carbohydrate and pyrimidine metabolism and zeatin biosynthesis pathways in leaves and increased carbohydrates, biosynthesis of DNA and proteins, cellular metabolism, and TCA cycle activity in roots. These results provide insights into the metabolic pathways regulated by "WSF23," with the PGPR conferring improvements in drought stress tolerance and post-drought recovery in a perennial grass species.


Assuntos
Agrostis , Agrostis/metabolismo , Resistência à Seca , Antioxidantes/metabolismo , Poaceae/metabolismo , Secas , Folhas de Planta/metabolismo , Estresse Fisiológico/genética
2.
Stress Biol ; 3(1): 12, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37676357

RESUMO

Global warming adversely affects crop production worldwide. Massive efforts have been undertaken to study mechanisms regulating heat tolerance in plants. However, the roles of structural variations (SVs) in heat stress tolerance remain unclear. In a recent article, Yan et al. (Nat Genet 1-12, 2023) constructed the first pan-genome of pearl millet (Pennisetum glaucum) and identified key SVs linked to genes involved in regulating plant tolerance to heat stress for an important crop with a superior ability to thrive in extremely hot and arid climates. Through multi-omics analyses integrating by pan-genomics, comparative genomics, transcriptomics, population genetics and and molecular biological technologies, they found RWP-RK transcription factors cooperating with endoplasmic reticulum-related genes play key roles in heat tolerance in pearl millet. The results in this paper provided novel insights to advance the understanding of the genetic and genomic basis of heat tolerance and an exceptional resource for molecular breeding to improve heat tolerance in pearl millet and other crops.

3.
Physiol Plant ; 175(1): e13861, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36690459

RESUMO

Expansins are cell-wall loosening proteins involved in plant cell expansion and elongation. Objectives of this study were to identify expansins related to leaf elongation in a perennial grass species and determine the relationship between the expression of expansin genes and leaf elongation. A total of 20 expansin genes were identified in tall fescue (Festuca arundinacea), out of which nine genes belonged to the EXPA- and 11 to the EXPB subfamily. Two genotypes ("TF007" and "TF116") with different growth rates were used to determine the correlation between expansins and leaf growth. Among the 20 expansins, 16 were differentially expressed in the leaf growth zone in "TF007" and "TF116." The further analysis of gene expression in different leaf segments of "TF007" and "TF116" revealed that the expression level of FaEXPB16 was positively correlated with leaf elongation rate, and "TF007" had a higher leaf elongation rate than "TF116" due to the greater expression level of FaEXPB16. FaEXPA7 exhibited significantly higher expression level in leaves of the rapid-growing genotypes than the slow-growing genotypes, suggesting that FaEXPA7 acts as a positive regulator for leaf elongation. FaEXPA7 also exhibited its highest expression level in the cell division zone located in the leaf base. FaEXPB3, FaEXPB4-2, and FaEXPB11-2 showed a negative correlation with the leaf elongation rate in "TF007" and "TF116" and were highly expressed in leaves of the slow-growing genotypes. As promoting or repressing factors for leaf growth, these five expansins could be used as candidate genes in developing the rapid or slow-growing perennial grass species.


Assuntos
Festuca , Lolium , Poaceae/genética , Lolium/metabolismo , Genótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
4.
Physiol Plant ; 174(5): e13766, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36053893

RESUMO

Heat stress is a major abiotic stress for temperate plant species with characteristic symptoms of premature leaf senescence. The objectives of this study were to evaluate the physiological effects of cytokinins (CK) and an ethylene inhibitor, aminoethoxyvinylglycine (AVG) on heat-induced leaf senescence in the temperate perennial grass species, perennial ryegrass (Lolium perenne), and to investigate whether WRKY transcription factors (TFs) could be associated with CK- or ethylene-mediated regulation of heat-induced leaf senescence by exogenously applying CK or AVG to perennial ryegrass. Perennial ryegrass plants foliar-sprayed with 6-benzylaminopurine (6-BA), and AVG exhibited prolonged stay-green phenotypes and a lesser degree of leaf senescence under heat stress (35/30°C), as shown by a decline in electrolyte leakage, malondialdehyde content, hydrogen peroxide, and superoxide content, and increased chlorophyll (Chl) content along with reduced activities of Chl-degrading enzymes (pheophytinase and chlorophyllase) and increased activity of Chl-synthesizing enzyme (porphobilinogen deaminase) due to 6-BA or AVG application. The suppression of heat-induced leaf senescence by 6-BA or AVG treatment corresponded with the upregulation of LpWRKY69 and LpWRKY70. The LpWRKY69 and LpWRKY70 promoters were predicted to share conserved cis-elements potentially recognized by TFs in the CK or ethylene pathways. These results indicate that LpWRKY69 and LpWRKY70 may negatively regulate heat-induced leaf senescence through CK or ethylene pathways, conferring heat tolerance in perennial ryegrass.


Assuntos
Citocininas , Lolium , Citocininas/metabolismo , Lolium/genética , Lolium/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Hidroximetilbilano Sintase/genética , Hidroximetilbilano Sintase/metabolismo , Hidroximetilbilano Sintase/farmacologia , Superóxidos/metabolismo , Senescência Vegetal , Folhas de Planta/fisiologia , Etilenos/farmacologia , Etilenos/metabolismo , Clorofila/metabolismo , Malondialdeído/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Plant Physiol Biochem ; 190: 164-173, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116225

RESUMO

α-Ketoglutarate (AKG) is a key intermediate metabolite in the tricarboxylic acid cycle of respiration and a precursor for glutamate, playing important roles in regulating plant growth and stress tolerance. The objectives of this study were to examine effects of AKG on heat tolerance characterized by leaf senescence in a cool-season grass species by foliar application and to determine major metabolites and associated metabolic pathways regulated by AKG for its effects on heat tolerance. Perennial ryegrass (Lolium perenne L.) plants were exposed to heat stress (35/30 °C, day/night) or optimal temperature (25/20 °C, day/night, non-stress control) in controlled-environment growth chambers. The solution containing AKG (5 mM) was applied to leaves by spraying 7 d prior to the initiation of heat stress and every 7 d during the heat stress period. Exogenous application of AKG enhanced heat tolerance in perennial ryegrass, as manifested by significant increases in leaf chlorophyll content, photochemical efficiency, and membrane stability, as well as activities of antioxidant enzymes for H2O2 scavenging in AKG-treated plants relative to untreated control plants exposed to heat stress. Metabolic profiling and pathway analysis demonstrated that exogenous AKG application enhanced metabolite accumulation in four major metabolic pathways, including antioxidant metabolism, amino acid metabolism, glycolysis and tricarboxylic acid cycle of respiration, and pyrimidine metabolism, contributing to AKG-improved heat tolerance in perennial ryegrass.


Assuntos
Lolium , Termotolerância , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Glutamatos/metabolismo , Peróxido de Hidrogênio/metabolismo , Ácidos Cetoglutáricos/metabolismo , Pirimidinas
6.
Nat Commun ; 13(1): 2843, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606360

RESUMO

Stimulated emission depletion (STED) microscopy is a powerful diffraction-unlimited technique for fluorescence imaging. Despite its rapid evolution, STED fundamentally suffers from high-intensity light illumination, sophisticated probe-defined laser schemes, and limited photon budget of the probes. Here, we demonstrate a versatile strategy, stimulated-emission induced excitation depletion (STExD), to deplete the emission of multi-chromatic probes using a single pair of low-power, near-infrared (NIR), continuous-wave (CW) lasers with fixed wavelengths. With the effect of cascade amplified depletion in lanthanide upconversion systems, we achieve emission inhibition for a wide range of emitters (e.g., Nd3+, Yb3+, Er3+, Ho3+, Pr3+, Eu3+, Tm3+, Gd3+, and Tb3+) by manipulating their common sensitizer, i.e., Nd3+ ions, using a 1064-nm laser. With NaYF4:Nd nanoparticles, we demonstrate an ultrahigh depletion efficiency of 99.3 ± 0.3% for the 450 nm emission with a low saturation intensity of 23.8 ± 0.4 kW cm-2. We further demonstrate nanoscopic imaging with a series of multi-chromatic nanoprobes with a lateral resolution down to 34 nm, two-color STExD imaging, and subcellular imaging of the immunolabelled actin filaments. The strategy expounded here promotes single wavelength-pair nanoscopy for multi-chromatic probes and for multi-color imaging under low-intensity-level NIR-II CW laser depletion.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , Lasers , Luz , Imagem Óptica/métodos
7.
Plant Physiol ; 189(2): 595-610, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35218362

RESUMO

Expression of chlorophyll (Chl) catabolic genes during leaf senescence is tightly controlled at the transcriptional level. Here, we identified a NAC family transcription factor, LpNAL, involved in regulating Chl catabolic genes via the yeast one-hybrid system based on truncated promoter analysis of STAYGREEN (LpSGR) in perennial ryegrass (Lolium perenne L.). LpNAL was found to be a transcriptional repressor, directly repressing LpSGR as well as the Chl b reductase gene, NONYELLOWING COLORING1. Perennial ryegrass plants over-expressing LpNAL exhibited delayed leaf senescence or stay-green phenotypes, whereas knocking down LpNAL using RNA interference accelerated leaf senescence. Comparative transcriptome analysis of leaves at 30 d after emergence in wild-type, LpNAL-overexpression, and knock-down transgenic plants revealed that LpNAL-regulated stay-green phenotypes possess altered light reactions of photosynthesis, antioxidant metabolism, ABA and ethylene synthesis and signaling, and Chl catabolism. Collectively, the transcriptional repressor LpNAL targets both Chl a and Chl b catabolic genes and acts as a brake to fine-tune the rate of Chl degradation during leaf senescence in perennial ryegrass.


Assuntos
Lolium , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Lolium/genética , Lolium/metabolismo , Folhas de Planta/metabolismo , Senescência Vegetal , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Plants (Basel) ; 11(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35050087

RESUMO

Aspartate is the most critical amino acid in the aspartate metabolic pathway, which is associated with multiple metabolic pathways, such as protein synthesis, nucleotide metabolism, TCA cycle, glycolysis, and hormone biosynthesis. Aspartate also plays an important role in plant resistance to abiotic stress, such as cold stress, drought stress, salt stress or heavy metal stress. This study found that the chlorophyll content and antioxidant active enzyme content (SOD, CAT, POD and APX) of perennial ryegrass treated with 2 mM aspartate were significantly higher than those treated with water under heat stress. The electrolyte leakage rate, MDA content and peroxide levels (O2- and H2O2) of perennial ryegrass treated with aspartate were significantly lower than those of perennial ryegrass treated with water, indicating that exogenous aspartate increases the content of chlorophyll, maintain the integrity of cell membrane system, and enhances SOD-CAT antioxidant pathway to eliminate the oxidative damage caused by ROS in perennial ryegrass under heat stress. Furthermore, exogenous aspartate could enhance the TCA cycle, the metabolism of the amino acids related to the TCA cycle, and pyrimidine metabolism to enhance the heat tolerance of perennial ryegrass.

9.
J Exp Bot ; 73(1): 429-444, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34536275

RESUMO

Loss of chlorophyll and oxidative damage co-occur during heat-induced leaf senescence. This study aimed to determine the functions of a chlorophyll catabolic gene, NON-YELLOW COLOURING 1 (NYC1)-like (NOL), in regulating heat-induced leaf senescence and to characterize antioxidant roles of a chlorophyll derivative, sodium copper chlorophyllin (SCC), in suppressing heat-induced leaf senescence. In two separate experiments, one by comparing NOL RNAi transgenic and wild-type plants, and the other by analysing the effects of SCC treatment, perennial ryegrass (Lolium perenne) was exposed to heat stress (38/35 °C, day/night) or optimal temperature (25/20 °C). Results showed that both knock down of LpNOL and application of SCC suppressed heat-induced leaf senescence, as manifested by increased chlorophyll content, reduced electrolyte leakage, down-regulation of chlorophyll-catabolic genes and senescence-related genes, as well as enhanced antioxidant capacity in the peroxidase pathway for H2O2 scavenging. Ex vivo SCC incubation protected membranes from H2O2 damage in mesophyll protoplasts of perennial ryegrass. The suppression of leaf senescence by knocking down NOL or chlorophyllin application was associated with enhanced chlorophyll accumulation playing antioxidant roles in protecting leaves from heat-induced oxidative damage.


Assuntos
Clorofila , Lolium , Antioxidantes , Clorofilídeos , Peróxido de Hidrogênio , Folhas de Planta , Senescência Vegetal
10.
Physiol Plant ; 173(4): 1979-1991, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34455589

RESUMO

The nonyellow COLORING 1-like gene (NOL) is known for its roles in accelerating leaf senescence, but the underlying metabolic mechanisms for heat-induced leaf senescence remain unclear. The objectives of this study were to identify metabolites and associated metabolic pathways regulated by knockdown of NOL in perennial ryegrass (Lolium perenne) and to determine the metabolic mechanisms of NOL controlling heat-induced leaf senescence. Wild-type (WT; cv. "Pinnacle") and two lines (Noli-1 and Noli-2) of perennial ryegrass with LpNOL knockdown were exposed to heat stress at 35/33°C (day/night) or nonstress control temperatures at 25/22°C (day/night) for 30 days in growth chambers. Leaf electrolyte leakage, chlorophyll (Chl) content, photochemical efficiency (Fv /Fm ), and net photosynthetic rate (Pn) were measured as physiological indicators of leaf senescence, while gas chromatography-mass spectrometry was performed to identify metabolites regulated by LpNOL. Knockdown of LpNOL suppressed heat-induced leaf senescence and produced a stay-green phenotype in perennial ryegrass, as manifested by increased Chl content, photochemical efficiency, net photosynthetic rate, and cell membrane stability in Noli-1 and Noli-2. Five metabolites (valine, malic acid, threonic acid, shikimic acid, chlorogenic acid) were uniquely upregulated in LpNOL plants exposed to heat stress, and six metabolites (aspartic acid, glutamic acid, 5-oxoproline, phenylalanine, proline, tartaric acid) exhibited more pronounced increases in their content in LpNOL plants than the WT. LpNOL could regulate heat-induced leaf senescence in perennial ryegrass through metabolic reprogramming in the pathways of respiration, secondary metabolism, antioxidant metabolism, and protein synthesis.


Assuntos
Lolium , Aminoácidos , Clorofila , Resposta ao Choque Térmico , Lolium/genética , Folhas de Planta
11.
Hortic Res ; 8(1): 165, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234106

RESUMO

CCCH is a subfamily of zinc finger proteins involved in plant growth, development, and stresses response. The function of CCCH in regulating leaf senescence, especially its roles in abscisic acid (ABA)-mediated leaf senescence is largely unknown. The objective of this study was to determine functions and mechanisms of CCCH gene in regulating leaf senescence in switchgrass (Panicum virgatum). A CCCH gene, PvCCCH69 (PvC3H69), was cloned from switchgrass. Overexpressing PvC3H69 in rice suppressed both natural senescence with leaf aging and dark-induced leaf senescence. Endogenous ABA content, ABA biosynthesis genes (NCED3, NCED5, and AAO3), and ABA signaling-related genes (SnRKs, ABI5, and ABF2/3/4) exhibited significantly lower levels in senescencing leaves of PvC3H69-OE plants than those in WT plants. PvC3H69-suppression of leaf senescence was associated with transcriptional upregulation of genes mainly involved in the light-dependent process of photosynthesis, including light-harvesting complex proteins, PSI proteins, and PSII proteins and downregulation of ABA biosynthesis and signaling genes and senescence-associated genes. PvC3H69 could act as a repressor for leaf senescence via upregulating photosynthetic proteins and repressing ABA synthesis and ABA signaling pathways.

12.
Trends Plant Sci ; 26(6): 607-630, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33893046

RESUMO

Asymmetry of investment in crop research leads to knowledge gaps and lost opportunities to accelerate genetic gain through identifying new sources and combinations of traits and alleles. On the basis of consultation with scientists from most major seed companies, we identified several research areas with three common features: (i) relatively underrepresented in the literature; (ii) high probability of boosting productivity in a wide range of crops and environments; and (iii) could be researched in 'precompetitive' space, leveraging previous knowledge, and thereby improving models that guide crop breeding and management decisions. Areas identified included research into hormones, recombination, respiration, roots, and source-sink, which, along with new opportunities in phenomics, genomics, and bioinformatics, make it more feasible to explore crop genetic resources and improve breeding strategies.


Assuntos
Produção Agrícola , Melhoramento Vegetal , Produtos Agrícolas/genética , Genômica , Fenótipo
13.
Plant J ; 106(5): 1219-1232, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33595908

RESUMO

Loss of chlorophyll (Chl) is a hallmark of leaf senescence, which may be regulated by Chl catabolic genes, including NON-YELLOW COLORING 1 (NYC1)-like (NOL). The objective of this study was to determine molecular factors and metabolic pathways underlying NOL regulation of leaf senescence in perennial grass species. LpNOL was cloned from perennial ryegrass (Lolium perenne L.) and found to be highly expressed in senescent leaves. Transient overexpression of LpNOL accelerated leaf senescence and Chl b degradation in Nicotiana benthamiana. LpNOL RNA interference (NOLi) in perennial ryegrass not only significantly blocked Chl degradation in senescent leaves, but also delayed initiation and progression of leaf senescence. This study found that NOL, in addition to functioning as a Chl b reductase, could enact the functional stay-green phenotype in perennial grass species, as manifested by increased photosynthetic activities in NOLi plants. Comparative transcriptomic analysis revealed that NOL-mediated functional stay-green in perennial ryegrass was mainly achieved through the modulation of Chl catabolism, light harvesting for photosynthesis, photorespiration, cytochrome respiration, carbohydrate catabolism, oxidative detoxification, and abscisic acid biosynthesis and signaling pathways.


Assuntos
Oxirredutases do Álcool/metabolismo , Clorofila/metabolismo , Lolium/genética , Redes e Vias Metabólicas/genética , Fotossíntese/genética , Transcriptoma , Ácido Abscísico/metabolismo , Oxirredutases do Álcool/genética , Expressão Gênica , Perfilação da Expressão Gênica , Lolium/enzimologia , Lolium/fisiologia , Oxirredução , Oxigênio/metabolismo , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Tempo , Nicotiana/genética , Nicotiana/fisiologia
14.
Plant Cell Physiol ; 61(12): 2018-2030, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32931553

RESUMO

Choline, as a precursor of glycine betaine (GB) and phospholipids, is known to play roles in plant tolerance to salt stress, but the downstream metabolic pathways regulated by choline conferring salt tolerance are still unclear for non-GB-accumulating species. The objectives were to examine how choline affects salt tolerance in a non-GB-accumulating grass species and to determine major metabolic pathways of choline regulating salt tolerance involving GB or lipid metabolism. Kentucky bluegrass (Poa pratensis) plants were subjected to salt stress (100 mM NaCl) with or without foliar application of choline chloride (1 mM) in a growth chamber. Choline or GB alone and the combined application increased leaf photochemical efficiency, relative water content and osmotic adjustment and reduced leaf electrolyte leakage. Choline application had no effects on the endogenous GB content and GB synthesis genes did not show responses to choline under nonstress and salt stress conditions. GB was not detected in Kentucky bluegrass leaves. Lipidomic analysis revealed an increase in the content of monogalactosyl diacylglycerol, phosphatidylcholine and phosphatidylethanolamine and a decrease in the phosphatidic acid content by choline application in plants exposed to salt stress. Choline-mediated lipid reprogramming could function as a dominant salt tolerance mechanism in non-GB-accumulating grass species.


Assuntos
Colina/metabolismo , Metabolismo dos Lipídeos , Poa/metabolismo , Plantas Tolerantes a Sal/metabolismo , Betaína/metabolismo , Colina/farmacologia , Colina/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Folhas de Planta/metabolismo , Poa/efeitos dos fármacos , Poa/fisiologia , Estresse Salino , Tolerância ao Sal , Plantas Tolerantes a Sal/fisiologia
15.
Hortic Res ; 7(1): 207, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328446

RESUMO

Protein phosphorylation is known to play crucial roles in plant tolerance to individual stresses, but how protein phosphorylation is associated with cross-stress tolerance, particularly drought priming-enhanced heat tolerance is largely unknown. The objectives of the present study were to identify phosphorylated proteins and phosphorylation sites that were responsive to drought priming and to determine whether drought priming-enhanced heat tolerance in temperate grass species involves changes in protein phosphorylation. Comparative analysis of phosphoproteomic profiles was performed on leaves of tall fescue (Festuca arundinacea) exposed to heat stress (38/33 °C, day/night) with or without drought priming. A total of 569 differentially regulated phosphoproteins (DRPs) with 1098 phosphorylation sites were identified in response to drought priming or heat stress individually or sequentially. Most DRPs were nuclear-localized and cytosolic proteins. Motif analysis detected [GS], [DSD], and [S..E] as major phosphorylation sites in casein kinase-II and mitogen-activated protein kinases regulated by drought priming and heat stress. Functional annotation and gene ontology analysis demonstrated that DRPs in response to drought priming and in drought-primed plants subsequently exposed to heat stress were mostly enriched in four major biological processes, including RNA splicing, transcription control, stress protection/defense, and stress perception/signaling. These results suggest the involvement of post-translational regulation of the aforementioned biological processes and signaling pathways in drought priming memory and cross-tolerance with heat stress in a temperate grass species.

16.
BMC Plant Biol ; 20(1): 520, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198630

RESUMO

BACKGROUND: Identification of genetic diversity in heat tolerance and associated traits is of great importance for improving heat tolerance in cool-season grass species. The objectives of this study were to determine genetic variations in heat tolerance associated with phenotypic and physiological traits and to identify molecular markers associated with heat tolerance in a diverse collection of perennial ryegrass (Lolium perenne L.). RESULTS: Plants of 98 accessions were subjected to heat stress (35/30 °C, day/night) or optimal growth temperature (25/20 °C) for 24 d in growth chambers. Overall heat tolerance of those accessions was ranked by principal component analysis (PCA) based on eight phenotypic and physiological traits. Among these traits, electrolyte leakage (EL), chlorophyll content (Chl), relative water content (RWC) had high correlation coefficients (- 0.858, 0.769, and 0.764, respectively) with the PCA ranking of heat tolerance. We also found expression levels of four Chl catabolic genes (CCGs), including LpNYC1, LpNOL, LpSGR, and LpPPH, were significant higher in heat sensitive ryegrass accessions then heat tolerant ones under heat stress. Furthermore, 66 pairs of simple sequence repeat (SSR) markers were used to perform association analysis based on the PCA result. The population structure of ryegrass can be grouped into three clusters, and accessions in cluster C were relatively more heat tolerant than those in cluster A and B. SSR markers significantly associated with above-mentioned traits were identified (R2 > 0.05, p < 0.01)., including two pairs of markers located on chromosome 4 in association with Chl content and another four pairs of markers in association with EL. CONCLUSION: The result not only identified useful physiological parameters, including EL, Chl content, and RWC, and their associated SSR markers for heat-tolerance breeding of perennial ryegrass, but also highlighted the involvement of Chl catabolism in ryegrass heat tolerance. Such knowledge is of significance for heat-tolerance breeding and heat tolerance mechanisms in perennial ryegrass as well as in other cool-season grass species.


Assuntos
Clorofila/genética , Clorofila/metabolismo , Resposta ao Choque Térmico/genética , Lolium/genética , Lolium/fisiologia , Termotolerância/genética , Termotolerância/fisiologia , Senescência Celular/genética , Senescência Celular/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Marcadores Genéticos/fisiologia , Variação Genética , Resposta ao Choque Térmico/fisiologia , Fenótipo , Folhas de Planta/fisiologia
17.
Plant Physiol Biochem ; 155: 570-578, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32846392

RESUMO

Aluminum (Al) can be detrimental to plant growth in areas with Al contamination. The objective of this study was to determine whether salicylic acid (SA) can improve plant tolerance to Al stress by mitigating Al toxicity for chloroplasts and photosynthetic systems in alfalfa (Medicago sativa L.). Plants were treated with Al (100 µM) for 3 d in a hydroponic system. The content of Al increased in leaves treated with Al, resulting in damage and deformation of chloroplasts. In Al-damaged leaves, chloroplast envelopes and starch granules disappeared; the lamellae and stroma lamella were loosely arranged and indistinguishable, and the number of grana was reduced; a large number of small plastoglobules appeared. Foliar spraying of 15 µM SA reduced Al content in roots and leaves and alleviated Al damages in chloroplasts. With 15 µM SA treatments, the chloroplast shape returned to a flat ellipsoid, thylakoids were arranged closely and regularly, chloroplasts had intact starch granules, and small plastoglobules disappeared. SA-treated plants had significantly higher aboveground biomass than the untreated control exposed to Al stress. Photosynthetic index and gene expression analyses demonstrated that SA could alleviate adverse effects of Al toxicity by increasing light capture efficiency, promoting electron transport in the photosynthetic electron transport chain and thylakoid lumen deacidification, and promoting synthesis of aenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). SA played protective roles in maintaining integrity and functions of photosystems in photosynthesis for plant tolerance to Al stress.


Assuntos
Alumínio/toxicidade , Medicago sativa/fisiologia , Fotossíntese , Ácido Salicílico/farmacologia , Medicago sativa/efeitos dos fármacos , Folhas de Planta
18.
Ann Bot ; 126(3): 481-497, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32445476

RESUMO

BACKGROUND AND AIMS: Rhizomes are key organs for the establishment of perennial grass stands and adaptation to environmental stress. However, mechanisms regulating rhizome initiation and elongation under drought stress and during post-drought recovery remain unclear. The objective of this study is to investigate molecular factors and metabolic processes involved in drought effects and post-drought recovery in rhizome growth in perennial grass species by comparative transcriptomic and proteomic profiling. METHODS: Tall fescue (Festuca arundinacea) (B-type rhizome genotype, 'BR') plants were exposed to drought stress and re-watering in growth chambers. The number and length of rhizomes were measured following drought stress and re-watering. Hormone and sugar contents were analysed, and transcriptomic and proteomic analyses were performed to identify metabolic factors, genes and proteins associated with rhizome development. KEY RESULTS: Rhizome initiation and elongation were inhibited by drought stress, and were associated with increases in the contents of abscisic acid (ABA) and soluble sugars, but declines in the contents of indoleacetic acid (IAA), zeatin riboside (ZR) and gibberellin (GA4). Genes involved in multiple metabolic processes and stress defence systems related to rhizome initiation exhibited different responses to drought stress, including ABA signalling, energy metabolism and stress protection. Drought-inhibition of rhizome elongation could be mainly associated with the alteration of GA4 and antioxidants contents, energy metabolism and stress response proteins. Upon re-watering, new rhizomes were regenerated from rhizome nodes previously exposed to drought stress, which was accompanied by the decline in ABA content and increases in IAA, ZR and GA4, as well as genes and proteins for auxin, lipids, lignin and nitrogen metabolism. CONCLUSIONS: Drought-inhibition of rhizome initiation and elongation in tall fescue was mainly associated with adjustments in hormone metabolism, carbohydrate metabolism and stress-defence systems. Rhizome regeneration in response to re-watering involved reactivation of hormone and lipid metabolism, secondary cell-wall development, and nitrogen remobilization and cycling.


Assuntos
Secas , Poaceae/genética , Ácido Abscísico , Regulação da Expressão Gênica de Plantas , Proteômica , Rizoma
19.
Plant Cell Environ ; 43(1): 159-173, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31600831

RESUMO

Choline may affect salt tolerance by regulating lipid and glycine betaine (GB) metabolism. This study was conducted to determine whether alteration of lipid profiles and GB metabolism may contribute to choline regulation and genotypic variations in salt tolerance in a halophytic grass, seashore paspalum (Paspalum vaginatum). Plants of Adalayd and Sea Isle 2000 were subjected to salt stress (200-mM NaCl) with or without foliar application of choline chloride (1 mM). Genotypic variations in salt tolerance and promotive effects of choline application on salt tolerance were associated with both the up-regulation of lipid metabolism and GB synthesis. The genotypic variations in salt tolerance associated with lipid metabolism were reflected by the differential accumulation of phosphatidylcholine and phosphatidylethanolamine between Adalayd and Sea Isle 2000. Choline-induced salt tolerance was associated with of the increase in digalactosyl diacylglycerol (DGDG) content including DGDG (36:4 and 36:6) in both cultivars of seashore paspalum and enhanced synthesis of phosphatidylinositol (34:2, 36:5, and 36:2) and phosphatidic acid (34:2, 34:1, and 36:5), as well as increases in the ratio of digalactosyl diacylglycerol: monogalactosyl diacylglycerol (DGDG:MGDG) in salt-tolerant Sea Isle 2000. Choline regulation of salt tolerance may be due to the alteration in lipid metabolism in this halophytic grass species.


Assuntos
Betaína/metabolismo , Colina/farmacologia , Metabolismo dos Lipídeos/fisiologia , Paspalum/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Paspalum/genética , Desenvolvimento Vegetal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Estresse Salino , Tolerância ao Sal/genética , Espectrometria de Massas em Tandem
20.
Biotechnol Biofuels ; 12: 224, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31548866

RESUMO

BACKGROUND: Switchgrass (Panicum virgatum) is a warm-season perennial grass. Improving its cold tolerance is important for its sustainable production in cooler regions. Through genome-wide bioinformatic analysis of switchgrass Zinc finger-CCCH genes (PvC3Hs), we found that several PvC3Hs, including PvC3H72, might play regulatory roles in plant cold tolerance. The objectives of this study were to characterize PvC3H72 using reverse genetics approach and to understand its functional role in cold signal transduction and cold tolerance in switchgrass. RESULTS: PvC3H72 is an intronless gene encoding a transcriptional activation factor. The expression of PvC3H72 was rapidly and highly induced by cold stress. Transgenic switchgrass with over-expressed PvC3H72 driven under maize ubiquitin promoter showed significantly improved chilling tolerance at 4 °C as demonstrated by less electrolyte leakage and higher relative water content than wild-type (WT) plants, as well as significantly higher survival rate after freezing treatment at - 5 °C. Improved cold tolerance of PvC3H72 transgenic lines was associated with significantly up-regulated expression of ICE1-CBF-COR regulon and ABA-responsive genes during cold treatment. CONCLUSIONS: PvC3H72 was the first characterized switchgrass cold-tolerance gene and also the only Znf-CCCH family gene known as a transcription factor in plant cold tolerance. PvC3H72 was an added signaling component in plant cold tolerance associated with regulation of ICE1-CBF-COR regulon and ABA-responsive genes. Knowledge gained in this study not only added another acting component into plant cold-tolerance mechanism, but also be of high value for genetic improvement of cold tolerance in switchgrass as well as other warm-season grasses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...