Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 2): 130945, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493818

RESUMO

INTRODUCTION: Immune checkpoint inhibitor therapy is a highly promising strategy for clinical treatment of cancer. Among these inhibitors, ipilimumab stands out for its ability to induce cytotoxic T cell proliferation and activation by binding to CTLA-4. However, ipilimumab also gives rise to systemic immune-related adverse effects and tumor immune evasion, limiting its effectiveness. OBJECTIVES: We developed IFNγ-ipilimumab and confirmed that the addition of INF-γ does not alter the fundamental properties of ipilimumab. RESULTS: IFNγ-ipilimumab can be activated by matrix metalloproteinases, thereby promoting the IFNγ signaling pathway and enhancing the cytotoxicity of T cells. In vivo studies demonstrated that IFNγ-ipilimumab enhances the therapeutic effect of ipilimumab against colorectal cancer by increasing CD8+ and CD4+ lymphocyte infiltration into the tumor area and inducing MHC-I expression in tumor cells. Mice treated with IFNγ-ipilimumab showed higher survival rates and body weight, as well as lower CD4+ and CD8+ lymphocyte activation rates in the blood and reduced organ damage. CONCLUSION: IFNγ-ipilimumab improved the effectiveness of ipilimumab while reducing its side effects. It is likely that future immunotherapies would rely on such antibodies to activate local cancer cells or immune cells, thereby increasing the therapeutic effectiveness of cancer treatments and ensuring their safety.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Ipilimumab/farmacologia , Ipilimumab/uso terapêutico , Anticorpos Monoclonais/efeitos adversos , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Linfócitos T Citotóxicos
2.
Inflamm Regen ; 43(1): 13, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797799

RESUMO

BACKGROUND: CTLA4Ig is a dimeric fusion protein of the extracellular domain of cytotoxic T-lymphocyte protein 4 (CTLA4) and an Fc (Ig) fragment of human IgG1 that is approved for treating rheumatoid arthritis. However, CTLA4Ig may induce adverse effects. Developing a lesion-selective variant of CTLA4Ig may improve safety while maintaining the efficacy of the treatment. METHODS: We linked albumin to the N-terminus of CTLA4Ig (termed Alb-CTLA4Ig) via a substrate sequence of matrix metalloproteinase (MMP). The binding activities and the biological activities of Alb-CTLA4Ig before and after MMP digestion were analyzed by a cell-based ELISA and an in vitro Jurkat T cell activation assay. The efficacy and safety of Alb-CTLA4Ig in treating joint inflammation were tested in mouse collagen-induced arthritis. RESULTS: Alb-CTLA4Ig is stable and inactive under physiological conditions but can be fully activated by MMPs. The binding activity of nondigested Alb-CTLA4Ig was at least 10,000-fold weaker than that of MMP-digested Alb-CTLA4Ig. Nondigested Alb-CTLA4Ig was unable to inhibit Jurkat T cell activation, whereas MMP-digested Alb-CTLA4Ig was as potent as conventional CTLA4Ig in inhibiting the T cells. Alb-CTLA4Ig was converted to CTLA4Ig in the inflamed joints to treat mouse collagen-induced arthritis, showing similar efficacy to that of conventional CTLA4Ig. In contrast to conventional CTLA4Ig, Alb-CTLA4Ig did not inhibit the antimicrobial responses in the spleens of the treated mice. CONCLUSIONS: Our study indicates that Alb-CTLA4Ig can be activated by MMPs to suppress tissue inflammation in situ. Thus, Alb-CTLA4Ig is a safe and effective treatment for collagen-induced arthritis in mice.

3.
Phys Chem Chem Phys ; 24(37): 22898-22904, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36124909

RESUMO

Coronavirus 3C-like protease (3CLpro) is found in SARS-CoV-2 virus, which causes COVID-19. 3CLpro controls virus replication and is a major target for target-based antiviral discovery. As reported by Pfizer, Nirmatrelvir (PF-07321332) is a competitive protein inhibitor and a clinical candidate for orally delivered medication. However, the binding mechanisms between Nirmatrelvir and 3CLpro complex structures remain unknown. This study incorporated ligand Gaussian accelerated molecular dynamics, the one-dimensional and two-dimensional potential of mean force, normal molecular dynamics, and Kramers' rate theory to determine the binding and dissociation rate constants (koff and kon) associated with the binding of the 3CLpro protein to the Nirmatrelvir inhibitor. The proposed approach addresses the challenges in designing small-molecule antiviral drugs.


Assuntos
Antivirais , Proteases 3C de Coronavírus , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Cisteína Endopeptidases/metabolismo , Lactamas , Leucina , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nitrilas , Peptídeo Hidrolases/metabolismo , Prolina , SARS-CoV-2/efeitos dos fármacos
4.
Pharmacol Res ; 177: 106115, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124207

RESUMO

The bidirectional interaction between carcinogens and gut microbiota that contributes to colorectal cancer is complicated. Reactivation of carcinogen metabolites by microbial ß-glucuronidase (ßG) in the gut potentially plays an important role in colorectal carcinogenesis. We assessed the chemoprotective effects and associated changes in gut microbiota induced by pre-administration of bacterial-specific ßG inhibitor TCH-3511 in carcinogen azoxymethane (AOM)-treated APCMin/+ mice. AOM induced intestinal ßG activity, which was reflected in increases in the incidence, formation, and number of tumors in the intestine. Notably, inhibition of gut microbial ßG by TCH-3511 significantly reduced AOM-induced intestinal ßG activity, decreased the number of polyps in both the small and large intestine to a frequency that was similar in mice without AOM exposure. AOM also led to lower diversity and altered composition in the gut microbiota with a significant increase in mucin-degrading Akkermansia genus. Conversely, mice treated with TCH-3511 and AOM exhibited a more similar gut microbiota structure as mice without AOM administration. Importantly, TCH-3511 treatment significant decreased Akkermansia genus and produced a concomitant increase in short-chain fatty acid butyrate-producing gut commensal microbes Lachnoospiraceae NK4A136 group genus in AOM-treated mice. Taken together, our results reveal a key role of gut microbial ßG in promoting AOM-induced gut microbial dysbiosis and intestinal tumorigenesis, indicating the chemoprotective benefit of gut microbial ßG inhibition against carcinogens via maintaining the gut microbiota balance and preventing cancer-associated gut microbial dysbiosis. Thus, the bacterial-specific ßG inhibitor TCH-3511 is a potential chemoprevention agent for colorectal cancer.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Animais , Azoximetano/toxicidade , Bactérias , Carcinogênese , Carcinógenos/toxicidade , Transformação Celular Neoplásica , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/prevenção & controle , Disbiose/prevenção & controle , Glucuronidase , Camundongos
5.
J Nanobiotechnology ; 20(1): 58, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35101043

RESUMO

BACKGROUND: Humanization of mouse monoclonal antibodies (mAbs) is crucial for reducing their immunogenicity in humans. However, humanized mAbs often lose their binding affinities. Therefore, an in silico humanization method that can prevent the loss of the binding affinity of mAbs is needed. METHODS: We developed an in silico V(D)J recombination platform in which we used V(D)J human germline gene sequences to design five humanized candidates of anti-tumor necrosis factor (TNF)-α mAbs (C1-C5) by using different human germline templates. The candidates were subjected to molecular dynamics simulation. In addition, the structural similarities of their complementarity-determining regions (CDRs) to those of original mouse mAbs were estimated to derive the weighted interatomic root mean squared deviation (wRMSDi) value. Subsequently, the correlation of the derived wRMSDi value with the half maximal effective concentration (EC50) and the binding affinity (KD) of the humanized anti-TNF-α candidates was examined. To confirm whether our in silico estimation method can be used for other humanized mAbs, we tested our method using the anti-epidermal growth factor receptor (EGFR) a4.6.1, anti-glypican-3 (GPC3) YP9.1 and anti-α4ß1 integrin HP1/2L mAbs. RESULTS: The R2 value for the correlation between the wRMSDi and log(EC50) of the recombinant Remicade and those of the humanized anti-TNF-α candidates was 0.901, and the R2 value for the correlation between wRMSDi and log(KD) was 0.9921. The results indicated that our in silico V(D)J recombination platform could predict the binding affinity of humanized candidates and successfully identify the high-affinity humanized anti-TNF-α antibody (Ab) C1 with a binding affinity similar to that of the parental chimeric mAb (5.13 × 10-10). For the anti-EGFR a4.6.1, anti-GPC3 YP9.1, and anti-α4ß1 integrin HP1/2L mAbs, the wRMSDi and log(EC50) exhibited strong correlations (R2 = 0.9908, 0.9999, and 0.8907, respectively). CONCLUSIONS: Our in silico V(D)J recombination platform can facilitate the development of humanized mAbs with low immunogenicity and high binding affinities. This platform can directly transform numerous mAbs with therapeutic potential to humanized or even human therapeutic Abs for clinical use.


Assuntos
Inibidores do Fator de Necrose Tumoral , Recombinação V(D)J , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados , Camundongos , Fator de Necrose Tumoral alfa
6.
Chem Sci ; 12(28): 9759-9769, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34349949

RESUMO

The on-target toxicity of monoclonal antibodies (Abs) is mainly due to the fact that Abs cannot distinguish target antigens (Ags) expressed in disease regions from those in normal tissues during systemic administration. In order to overcome this issue, we "copied" an autologous Ab hinge as an "Ab lock" and "pasted" it on the binding site of the Ab by connecting a protease substrate and linker in between to generate a pro-Ab, which can be specifically activated in the disease region to enhance Ab selectivity and reduce side effects. Previously, we reported that 70% of pro-Abs can achieve more than 100-fold blocking ability compared to the parental Abs. However, 30% of pro-Abs do not have such efficient blocking ability. This is because the same Ab lock linker cannot be applied to every Ab due to the differences in the complementarity-determining region (CDR) loops. Here we designed a method which uses structure-based computational simulation (MSCS) to optimize the blocking ability of the Ab lock for all Ab drugs. MSCS can precisely adjust the amino acid composition of the linker between the Ab lock and Ab drug with the assistance of molecular simulation. We selected αPD-1, αIL-1ß, αCTLA-4 and αTNFα Ab as models and attached the Ab lock with various linkers (L1 to L7) to form pro-Abs by MSCS, respectively. The resulting cover rates of the Ab lock with various linkers compared to the Ab drug were in the range 28.33-42.33%. The recombinant pro-Abs were generated by MSCS prediction in order to verify the application of molecular simulation for pro-Ab development. The binding kinetics effective concentrations (EC-50) for αPD-1 (200-250-fold), αIL-1ß (152-186-fold), αCTLA-4 (68-150-fold) and αTNFα Ab (20-123-fold) were presented as the blocking ability of pro-Ab compared to the Ab drug. Further, there was a positive correlation between cover rate and blocking ability of all pro-Ab candidates. The results suggested that MSCS was able to predict the Ab lock linker most suitable for application to αPD-1, αIL-1ß, αCTLA-4 and αTNFα Ab to form pro-Abs efficiently. The success of MSCS in optimizing the pro-Ab can aid the development of next-generation pro-Ab drugs to significantly improve Ab-based therapies and thus patients' quality of life.

8.
Sci Rep ; 11(1): 14846, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290297

RESUMO

Canakinumab is a fully human monoclonal antibody that specifically neutralizes human interleukin (IL)-1ß and has been approved by the US Food and Drug Administration for treating different types of autoinflammatory disorders such as cryopyrin-associated periodic syndrome, tumor necrosis factor receptor-associated periodic syndrome and systemic juvenile idiopathic arthritis. However, long-term systemic neutralization of IL-1ß by Canakinumab may cause severe adverse events such as serious upper respiratory tract infections and inflammation, thereby decreasing the quality of life of patients. Here, we used an IgG1 hinge as an Ab lock to cover the IL-1ß-binding site of Canakinumab by linking with matrix metalloprotease 9 (MMP-9) substrate to generate pro-Canakinumab that can be specifically activated in the inflamed regions in autoinflammatory diseases to enhance the selectivity and safety of treatment. The Ab lock significantly inhibited the IL-1ß-binding by 68-fold compared with Canakinumab, and MMP-9 completely restored the IL-1ß neutralizing ability of pro-Canakinumab within 60 min and blocked IL-1ß-downstream signaling and IL-1ß-regulated genes (i.e., IL-6). It is expected that MMP-9 cleavable and efficient Ab lock will be able to significantly enhance the selective reaction of Canakinumab at the disease site and reduce the on-target toxicities of Canakinumab during systemic circulation, thereby showing potential for development to improve the safety and quality of life of patients with autoinflammatory disorders in the future.


Assuntos
Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Artrite Juvenil/terapia , Síndromes Periódicas Associadas à Criopirina/terapia , Interleucina-1beta/imunologia , Células A549 , Anticorpos Monoclonais Humanizados/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Interleucina-1beta/metabolismo , Metaloproteinase 9 da Matriz/metabolismo
9.
Sci Rep ; 11(1): 7598, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828191

RESUMO

Ovarian cancer is highly metastatic, with a high frequency of relapse, and is the most fatal gynecologic malignancy in women worldwide. It is important to elevate the drug susceptibility and cytotoxicity of ovarian cancer cells, thereby eliminating resident cancer cells for more effective therapeutic efficacy. Here, we developed a bispecific antibody (BsAb; mPEG × HER2) that can easily provide HER2+ tumor tropism to mPEGylated liposomal doxorubicin (PLD) and further increase the drug accumulation in cancer cells via receptor-mediated endocytosis, and improve the cytotoxicity and therapeutic efficacy of HER2+ ovarian tumors. The mPEG × HER2 can simultaneously bind to mPEG molecules on the surface of PLD and HER2 antigen on the surface of ovarian cancer cells. Simply mixing the mPEG × HER2 with PLD was able to confer HER2 specificity of PLD to HER2+ ovarian cancer cells and efficiently trigger endocytosis and enhance cytotoxicity by 5.4-fold as compared to non-targeted PLD. mPEG × HER2-modified PLD was able to significantly increase the targeting and accumulation of HER2+ ovarian tumor by 220% as compared with non-targeted PLD. It could also significantly improve the anti-tumor activity of PLD (P < 0.05) with minimal obvious toxicity in a tumor-bearing mouse model. We believe that the mPEG × HER2 can significantly improve the therapeutic efficacy, potentially reduce the relapse freqency and thereby achieve good prognosis in ovarian cancer patients.


Assuntos
Neoplasias Ovarianas/terapia , Polietilenoglicóis/farmacologia , Tropismo/efeitos dos fármacos , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapêutico , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas , Recidiva Local de Neoplasia , Neoplasias Ovarianas/metabolismo , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Polietilenoglicóis/uso terapêutico , Tropismo/fisiologia
10.
J Nanobiotechnology ; 19(1): 16, 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33422061

RESUMO

BACKGROUND: Tumor-targeted nanoparticles hold great promise as new tools for therapy of liquid cancers. Furthermore, the therapeutic efficacy of nanoparticles can be improved by enhancing the cancer cellular internalization. METHODS: In this study, we developed a humanized bispecific antibody (BsAbs: CD20 Ab-mPEG scFv) which retains the clinical anti-CD20 whole antibody (Ofatumumab) and is fused with an anti-mPEG single chain antibody (scFv) that can target the systemic liquid tumor cells. This combination achieves the therapeutic function and simultaneously "grabs" Lipo-Dox® (PEGylated liposomal doxorubicin, PLD) to enhance the cellular internalization and anticancer activity of PLD. RESULTS: We successfully constructed the CD20 Ab-mPEG scFv and proved that CD20 Ab-mPEG scFv can target CD20-expressing Raji cells and simultaneously grab PEGylated liposomal DiD increasing the internalization ability up to 60% in 24 h. We further showed that the combination of CD20 Ab-mPEG scFv and PLD successfully led to a ninefold increase in tumor cytotoxicity (LC50: 0.38 nM) compared to the CD20 Ab-DNS scFv and PLD (lC50: 3.45 nM) in vitro. Importantly, a combination of CD20 Ab-mPEG scFv and PLD had greater anti-liquid tumor efficacy (P = 0.0005) in Raji-bearing mice than CD20 Ab-DNS scFv and PLD. CONCLUSION: Our results indicate that this "double-attack" strategy using CD20 Ab-mPEG scFv and PLD can retain the tumor targeting (first attack) and confer PLD tumor-selectivity (second attack) to enhance PLD internalization and improve therapeutic efficacy in liquid tumors.


Assuntos
Anticorpos Biespecíficos/imunologia , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Leucemia/tratamento farmacológico , Polietilenoglicóis/farmacologia , Anticorpos de Cadeia Única/farmacologia , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Nanopartículas , Polietilenoglicóis/uso terapêutico , Anticorpos de Cadeia Única/uso terapêutico
11.
Sci Rep ; 9(1): 9931, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289297

RESUMO

Membrane antigens (mAgs) are important targets for the development of antibody (Ab) drugs. However, native mAgs are not easily prepared, causing difficulties in acquiring functional Abs. In this study, we present a platform in which human mAgs were expressed in native form on cell adjuvants made with membrane-bound cytokines that were then used immunize syngeneic mice directly. The membrane-bound cytokines were used as immune stimulators to enhance specific Ab responses against the desired mAgs. Then, mAgs-expressing xenogeneic cells were used for Ab characterization to reduce non-specific binding. We established cell adjuvants by expressing membrane-bound cytokines (mIL-2, mIL-18, or mGM-CSF) on BALB/3T3 cells, which were effective in stimulating splenocyte proliferation in vitro. We then transiently expressed ecotropic viral integration site 2B (EVI2B) on the adjuvants and used them to directly immunize BALB/c mice. We found that 3T3/mGM-CSF cells stimulated higher specific anti-EVI2B Ab response in the immunized mice than the other cell adjuvants. A G-protein coupled receptor (GPCR), CXCR2, was then transiently expressed on 3T3/mGM-CSF cell adjuvant to immunize mice. The immune serum exhibited relatively higher binding to xenogeneic 293 A/CXCR2 cells than 293 A cells (~3.5-fold). Several hybridoma clones also exhibited selective binding to 293 A/CXCR2 cells. Therefore, the cell adjuvant could preserve the native conformation of mAgs and exhibit anti-mAg Ab stimulatory ability, providing a more convenient and effective method to generate functional Abs, thus possibly accelerating Ab drug development.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Monoclonais/imunologia , Membrana Celular/metabolismo , Receptores de Interleucina-8B/imunologia , Animais , Formação de Anticorpos , Membrana Celular/imunologia , Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Receptores de Interleucina-8B/metabolismo
12.
PLoS Biol ; 17(6): e3000286, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31194726

RESUMO

During rheumatoid arthritis (RA) treatment, long-term injection of antitumor necrosis factor α antibodies (anti-TNFα Abs) may induce on-target toxicities, including severe infections (tuberculosis [TB] or septic arthritis) and malignancy. Here, we used an immunoglobulin G1 (IgG1) hinge as an Ab lock to cover the TNFα-binding site of Infliximab by linking it with matrix metalloproteinase (MMP) -2/9 substrate to generate pro-Infliximab that can be specifically activated in the RA region to enhance the selectivity and safety of treatment. The Ab lock significantly inhibits the TNFα binding and reduces the anti-idiotypic (anti-Id) Ab binding to pro-Infliximab by 395-fold, 108-fold compared with Infliximab, respectively, and MMP-2/9 can completely restore the TNFα neutralizing ability of pro-Infliximab to block TNFα downstream signaling. Pro-Infliximab was only selectively activated in the disease site (mouse paws) and presented similar pharmacokinetics (PKs) and bio-distribution to Infliximab. Furthermore, pro-Infliximab not only provided equivalent therapeutic efficacy to Infliximab but also maintained mouse immunity against Listeria infection in the RA mouse model, leading to a significantly higher survival rate (71%) than that of the Infliximab treatment group (0%). The high-selectivity pro-Infliximab maintains host immunity and keeps the original therapeutic efficiency, providing a novel strategy for RA therapy.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Infliximab/farmacologia , Animais , Artrite Reumatoide/fisiopatologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/uso terapêutico , Infliximab/metabolismo , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
13.
Anal Chem ; 89(11): 6082-6090, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28485140

RESUMO

Sensitive quantification of the pharmacokinetics of poly(ethylene glycol) (PEG) and PEGylated molecules is critical for PEGylated drug development. Here, we developed a sensitive sandwich enzyme-linked immunosorbent assay (ELISA) for PEG by tethering an anti-PEG antibody (AGP3) via tethers with different dimensions on the surface of 293T cells (293T/S-αPEG, short-type cells; 293T/L-αPEG, long-type cells; 293T/SL-αPEG, hybrid-type cells) to improve the binding capacity and detection limit for free PEG and PEGylated molecules. The binding capacity of hybrid-type cells for PEG-like molecules (CH3-PEG5K-FITC (FITC = fluorescein isothiocyanate) and eight-arm PEG20K-FITC) was at least 10-80-fold greater than that of 293T cells expressing anti-PEG antibodies with uniform tether lengths. The detection limit of free PEG (OH-PEG3K-NH2 and CH3-PEG5K-NH2) and PEG-like molecule (CH3-PEG5K-FITC, CH3-PEG5K-SHPP, and CH3-PEG5K-NIR797) was14-137 ng mL-1 in the hybrid-type cell-based sandwich ELISA. 293T/SL-αPEG cells also had significantly higher sensitivity for quantification of a PEGylated protein (PegIntron) and multiarm PEG macromolecules (eight-arm PEG20K-NH2 and eight-arm PEG40K-NH2) at 3.2, 16, and 16 ng mL-1, respectively. Additionally, the overall binding capacity of 293T/SL-αPEG cells for PEGylated macromolecules was higher than that of 293T/S-αPEG or 293T/L-αPEG cells. Anchoring anti-PEG antibodies on cells via variable-length tethers for cell-based sandwich ELISA, therefore, provides a sensitive, high-capacity method for quantifying free PEG and PEGylated molecules.


Assuntos
Anticorpos/metabolismo , Membranas/metabolismo , Polietilenoglicóis/análise , Reagentes de Ligações Cruzadas/química , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...