Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(15): 18591-18607, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564431

RESUMO

Coronavirus disease 2019 (COVID-19) has caused a global pandemic since its onset in 2019, and the development of effective vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce potent and long-lasting immunity remains a priority. Herein, we prepared two Lactobacillus exopolysaccharide (EPS) nanoparticle adjuvants (NPs 7-4 and NPs 8-2) that were constructed by using sulfation-modified EPS and quaternization-modified chitosan. These two NPs displayed a spherical morphology with sizes of 39 and 47 nm. Furthermore, the zeta potentials of NPs 7-4 and NPs 8-2 were 50.40 and 44.40 mV, respectively. In vitro assays demonstrated that NPs could effectively adsorb antigenic proteins and exhibited a sustained release effect. Mouse immunization tests showed that the NPs induced the expression of cytokines and chemokines at the injection site and promoted the uptake of antigenic proteins by macrophages. Mechanically, the NPs upregulated the expression of pattern recognition receptors (toll-like receptors and nod-like receptors) and activated the immune response of T cells and the production of neutralizing antibodies. In addition, the NP adjuvants had favorable immune-enhancing effects in cats, which are of great significance for controlling the trans-host transmission and re-endemicity of SARS-CoV-2. Overall, we demonstrated that NP-adjuvanted SARS-CoV-2 receptor binding domain proteins could induce robust specific humoral and cellular immunity.


Assuntos
COVID-19 , Nanopartículas , Animais , Camundongos , Gatos , Vacinas contra COVID-19 , SARS-CoV-2 , Sulfatos/farmacologia , Adjuvantes Imunológicos/química , Nanopartículas/química , Adjuvantes Farmacêuticos/farmacologia , Imunidade Celular , Vacinas de Subunidades Antigênicas/farmacologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38615809

RESUMO

Graphdiyne (GDY) is a new member of family of carbon-based 2D nanomaterials (NMs), but the environmental toxicity is less investigated compared with other 2D NMs, such as graphene oxide (GO). In this study, we compared with developmental toxicity of GO and GDY to zebrafish larvae. It was shown that exposure of zebrafish embryos from 5 h post fertilization to GO and GDY for up to 5 days decreased hatching rate and induced morphological deformity. Behavioral tests indicated that GO and GDY treatment led to hyperactivity of larvae. However, blood flow velocity was not significantly affected by GO or GDY. RNA-sequencing data revealed that both types of NMs altered gene expression profiles as well as gene ontology terms and KEGG pathways related with metabolism. We further confirmed that the NMs altered the expression of genes related with lipid droplets and autophagy, which may be account for the delayed development of zebrafish larvae. At the same mass concentrations, GO induced comparable or even larger toxic effects compared with GDY, indicating that GDY might be more biocompatible compared with GO. These results may provide novel understanding about the environmental toxicity of GO and GDY in vivo.


Assuntos
Grafite , Larva , Peixe-Zebra , Animais , Grafite/toxicidade , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Embrião não Mamífero/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos
3.
J Hazard Mater ; 468: 133770, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401212

RESUMO

Recently, the demand for healthcare products especially wearable smart masks is increasing. The biosafety and degradability of smart masks are crucial for human health and environmental protection. However, the development of biodegradable and biocompatible fibrous membranes with high filtration efficiency and low pressure drop is still a challenge. How to realize the collaborative improvement between air filtration efficiency and pressure drop of the nanofibrous membrane is still a challenge. Here, a tribo-charge enhanced and biodegradable nanofibrous membranes (TCB NFMs) with highly fluffy structure for air filtration and self-powered respiration monitoring systems is reported for the first time. The filtration efficiency and pressure drop of the prepared membranes for 0.3 µm NaCl particulates is 99.971% and 41.67 Pa. The TCB NFMs based smart mask possesses a series of satisfactory and excellent characteristics, such as self-powered, biodegradable, biocompatible, high filtration efficiency, and low pressure drop, which is highly promising for application in air filtration systems and intelligent wearable respiration monitoring systems.


Assuntos
Filtros de Ar , Nanofibras , Humanos , Celulose , Conservação dos Recursos Naturais , Respiração
4.
ACS Sens ; 9(3): 1391-1400, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38364864

RESUMO

Achieving reliable detection of trace levels of NO2 gas is essential for environmental monitoring and protection of human health protection. Herein, a thin-film gas sensor based on branched WO3/W18O49 heterostructures was fabricated. The optimized WO3/W18O49 sensor exhibited outstanding NO2 sensing properties with an ultrahigh response value (1038) and low detection limit (10 ppb) at 50 °C. Such excellent sensing performance could be ascribed to the synergistic effect of accelerated charge transfer and increased active sites, which is confirmed by electrochemical impedance spectroscopy and temperature-programmed desorption characterization. The sensor exhibited an excellent detection ability to NO2 under different air quality conditions. This work provides an effective strategy for constructing WO3/W18O49 heterostructures for developing NO2 gas sensors with an excellent sensing performance.


Assuntos
Espectroscopia Dielétrica , Dióxido de Nitrogênio , Humanos , Domínio Catalítico , Monitoramento Ambiental
5.
ACS Nano ; 18(4): 3839-3849, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227979

RESUMO

Lithium-ion batteries, which have dominated large-scale energy storage for the past three decades, face limitations in energy density and cost. Sulfur, with its impressive capacity of 1675 mAh g-1 and high theoretical energy density of 1274 Wh kg-1, stands out as a promising cathode material, leading to a growing focus on sodium-sulfur (Na-S) batteries as an alternative to address lithium resource scarcity. Nevertheless, the development is restrained by poor conductivity, volume expansion of the sulfur cathode, and the shuttle effect of sodium polysulfides (Na2Sn) in the electrolytes. In this study, a facile method is designed to fabricate phosphor-doped carbon (phos-C), which is then used as a sulfur matrix. This micromesoporous phos-C network enhances sulfur utilization, increases overall cathode conductivity, and effectively mitigates the shuttling of Na2Sn. During the discharge process, phos-C can absorb soluble Na2Sn and increase the conductivity of sulfur, while serving as a reservoir for electrolyte and Na2Sn, thereby preventing their infiltration into the anode and reducing the loss of sodium. As a result, the well-designed sulfur-loaded phos-C (S/phos-C) cathode, employed in the Na-S battery, demonstrates a capacity of 1034 mAh g-1 at 0.1 C (1 C = 1675 mA g-1) and an excellent rate capability of 339 mAh g-1 at 10 C, coupled with a prolonged cycling life up to 2000 cycles at 1 C, exhibiting an ultralow capacity decay rate of 0.013% per cycle. Overall, this study introduces an efficient method for creating long-lasting Na-S batteries.

6.
J Appl Toxicol ; 44(5): 686-698, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38095138

RESUMO

To evaluate the oral toxicity of nanoparticles (NPs), it is necessary to consider the interactions between NPs and nutrient molecules. Recently, we reported that epigallocatechin gallate (EGCG), a healthy component in green tea, alleviated the toxicity of ZnO NPs to 3D Caco-2 spheroids in vitro. The present study investigated the combined effects of EGCG and ZnO NPs to mice in vivo. Mice were administrated with 35 or 105 mg/kg bodyweight ZnO NPs with or without the presence of 80 mg/kg bodyweight EGCG via gastric route, once a day, for 21 days, and the influences of EGCG on the toxicity of ZnO NPs to intestine were investigated. We found that EGCG altered the colloidal properties of ZnO NPs both in water and artificial intestine juice. As expected, ZnO NPs induced toxicological effects, such as decreased bodyweight, higher Chiu's scores, and ultrastructural changes in intestine, whereas EGCG alleviated these effects. Combined exposure to EGCG and ZnO NPs also changed trace element levels in mouse intestine. For example, the levels of Ti, Co, and Ni were only significantly elevated after co-exposure to EGCG and ZnO NPs, and Fe levels were only significantly decreased by ZnO NPs. Western blot analysis suggested that tight junction (TJ) and endoplasmic reticulum (ER) proteins were elevated by ZnO NPs, but EGCG inhibited this trend. Combined, these data suggested that gastric exposure to ZnO NPs induced intestinal damage, trace element imbalance, and TJ/ER protein expression in mouse intestine, whereas EGCG alleviated these effects of ZnO NPs.


Assuntos
Catequina/análogos & derivados , Nanopartículas , Oligoelementos , Óxido de Zinco , Humanos , Camundongos , Animais , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Células CACO-2 , Nanopartículas/toxicidade , Nanopartículas/química
7.
Int J Biol Macromol ; 254(Pt 1): 127707, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37923046

RESUMO

The pollution of heavy metals such as Cu2+ is still serious and the discharge of sewage of Cu2+ will cause damage to soil environment and human health. Herein, a biomass-based solid-state fluorescence detection platform (CPU-CDs) was developed as fluorescent sensor for detection Cu2+ via fluorescence and colorimetric dual-model methods in real time. CPU-CDs was composed of xylan-derived CDs (U-CDs) and cotton cellulose paper, which exhibiting good reusability, non-toxicity, excellent fluorescence characteristics and high biocompatibility. Further, CPU-CDs displayed high effectiveness and sensitivity for Cu2+ with the detection limit as low as 0.14 µM, which was well below U.S. EPA safety levels (20 µM). Practical application indicated that CPU-CDs could achieve precision response of Cu2+ change in real environment water samples with good recovery range of 90 %-119 %. This strategy demonstrated a promising biomass solid-state fluorescence sensor for Cu2+ detection for water treatment research, which is of great significance in dealing with water pollution caused by heavy metal ions.


Assuntos
Pontos Quânticos , Humanos , Espectrometria de Fluorescência/métodos , Limite de Detecção , Xilanos , Celulose , Carbono , Corantes Fluorescentes
8.
Int J Biol Macromol ; 253(Pt 3): 126963, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37722642

RESUMO

Picric acid (PA) is highly water-soluble, the fact makes it stand out as the most hazardous environment pollutant. Therefore, accurate determination of PA is of great significance for human health and environmental protection. Herein, a novel indole-based fluorescent sensor (H1) with good water solubility and fluorescence stability was reported. H1 exhibited 'turn-off' fluorescence response for PA with fast reaction rate (<30 s), unique specificity and excellent selectivity and high sensitivity (limit of detection = 34 nM). Further, H1 was successfully applied to detect PA in real samples (tap water, Yangtze River, Xuanwu Lake, soil, food, fish and shrimp) with satisfactory recoveries at three spiking levels ranging from 98.0 to 112.0 %. In addition, H1 displayed high biocompatibility in mung beans and fresh blood. Moreover, aiming to attain portable analysis, H1 was composited with biomass cellulose paper (H1-FP) and integrated with smartphone for construction as a solid-state fluorescence platform to achieve fast and visual detection of PA in suit with significant stability, high sensitively and selectivity. The establishment of this sensing approach is expected to offer new insight into rapid, selective, and sensitive detection of major pollutants for food and environmental safety.


Assuntos
Celulose , Poluentes Ambientais , Humanos , Biomassa , Espectrometria de Fluorescência , Água , Corantes Fluorescentes
9.
Int J Biol Macromol ; 252: 126431, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37604423

RESUMO

Water and soil pollution caused by Cu2+ is not conducive to sustainable development of environment and could cause damage to environment and even human body. Currently, fluorescent sensor solutions analysis method has been used for Cu2+ detection, but they also suffer from drawbacks including easy leakage, difficult storage, and inaccurate. Herein, a green solid-state biomass fluorescence platform (NBU-CDs) consisting of xylan-derived carbon dots (U-CDs) and polylactic acid/polycaprolactone (PLA/PCL) was designed by using in situ electrospinning technology. The prepared NBU-CDs fluorescence platform showed good fluorescence effect and can be served as fluorescence sensor for detecting Cu2+ with high sensitively, selectively and low detection limit (LOD = 0.83 µM). The practical applications of NBU-CDs exhibited high specificity for Cu2+ detection in zebrafish, water samples (school lake, Xuanwu Lake and Yangtze River) with high recovery rates of 97 %-104 % and soil (pond soil, grassland soil and bamboo soil) samples, respectively. The developed fluorescence platform was utilized to predict water and soil safety by monitoring Cu2+ concentration and provides a new strategy for Cu2+ detection.


Assuntos
Nanofibras , Pontos Quânticos , Humanos , Animais , Xilanos , Carbono , Biomassa , Peixe-Zebra , Cobre/análise , Água/análise , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes , Solo
10.
Mater Horiz ; 10(10): 4000-4032, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37489089

RESUMO

Recently, polymers capable of repeatedly self-healing physical damage and restoring mechanical properties have attracted extensive attention. Among the various supramolecular chemistry, hydrogen-bonding (H-bonding) featuring reversibility, directionality and high per-volume concentration has become one of the most attractive directions for the development of self-healing polymers (SHPs). Herein, we review the recent advances in the design of high-performance SHPs based on different H-bonding types, for example, H-bonding motifs and excessive H-bonding. In particular, the effects of the structural design of SHPs on their mechanical performance and healing efficiency are discussed in detail. Moreover, we also summarize how to employ H-bonding-based SHPs for the preparation of self-healable electronic devices, focusing on promising topics, including energy harvesting devices, energy storage devices, and flexible sensing devices. Finally, the current challenges and possible strategies for the development of H-bonding-based SHPs and their smart electronic applications are highlighted.

11.
Fitoterapia ; 168: 105557, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37268237

RESUMO

The study on the extraction conditions, purification, and biological activity of slash pine (Pinus elliottii.) is important for the development of slash pine resources. The optimal process conditions for the extraction of slash pine polysaccharide (SPP) were determined, resulting in a liquid-solid ratio of 66.94 mL/g, extraction temperature of 83.74 °C and extraction time of 2.56 h by using the response surface methodology, and the yield of SPP was 5.99% under the optimized conditions. Following the purification of SPP, the SPP-2 component was obtained and its physicochemical properties, functional group composition, antioxidant capacity, and moisturizing capacity were determined. Structural analysis suggested that SPP-2 has a molecular weight of 118.407 kDa, and was composed of rhamnose, arabinose, fucose, xylose, mannose, glucose, and galactose in a ratio of 5.98: 14.34: 1: 1.75: 13.50: 3.43: 15.79. The antioxidant activity analysis showed that SPP-2 has good free radical scavenging activity, and it was also found to have in vitro moisturizing activity and low irritation. These results suggest that SPP-2 has the potential for applications in the pharmaceutical, food, and cosmetic industries.


Assuntos
Antioxidantes , Pinus , Pinus/química , Estrutura Molecular , Polissacarídeos , Alimentos
12.
J Colloid Interface Sci ; 649: 68-75, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37336155

RESUMO

Chitosan microparticles are frequently used for the encapsulation of ingredients, owing to their pH-responsive, renewable, biocompatible and antimicrobial properties. Herein, pH-responsive antibacterial encapsulation carriers in chitosan-phytate (CS-PA) microparticles with various morphologies were prepared by gas-shearing microfluidics. Microparticles sizes were tuned by gas flow rate in production, and the CS and PA concentration significantly dominated the morphology of microparticles. Additionally, microparticles exhibit great storage stability, lyophilizing rehydration performance, pH-responsive behavior, as well as antibacterial and biocompatible effect, indicating that CS-PA microparticles are expected to become an ideal carrier for the actives encapsulation in pharmaceutical, food and cosmetic industries.


Assuntos
Anti-Infecciosos , Quitosana , Ácido Fítico , Microfluídica , Antibacterianos
13.
Int J Biol Macromol ; 242(Pt 4): 124963, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244336

RESUMO

Bacterial infections pose a serious threat to public health, causing worldwide morbidity and about 80 % of bacterial infections are related to biofilm. Removing biofilm without antibiotics remains an interdisciplinary challenge. To solve this problem, we presented a dual-power driven antibiofilm system Prussian blue composite microswimmers based on alginate-chitosan, which designed into an asymmetric structure to achieve self-driven in the fuel solution and magnetic field. Prussian blue embedded in the microswimmers given it the ability to convert light and heat, catalyze Fenton reaction, and produce bubbles and reactive oxygen species. Moreover, with the addition of Fe3O4, the microswimmers could move in group under external magnetic field. The composite microswimmers displayed excellent antibacterial activity against S. aureus biofilm with an efficiency as high as 86.94 %. It is worth mentioning that the microswimmers were fabricated with device-simple and low-cost gas-shearing method. This system integrating physical destruction, chemical damage such chemodynamic therapy and photothermal therapy, and finally kill the plankton bacteria embedded in biofilm. This approach may cause an autonomous, multifunctional antibiofilm platform to promote the present most areas with harmful biofilm difficult to locate the surface for removal.


Assuntos
Quitosana , Quitosana/farmacologia , Quitosana/química , Alginatos , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes
14.
Carbohydr Polym ; 299: 120134, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876772

RESUMO

The emergence, spread and difficult removal of bacteria biofilm, represent an ever-increasing persistent infections and medical complications challenge worldwide. Herein, a self-propelled system Prussian blue micromotor (PB MMs) were constructed by gas-shearing technology for efficient degradation of biofilms by combining chemodynamic therapy (CDT) and photothermal therapy (PTT). With the interpenetrating network crosslinked by alginate, chitosan (CS) and metal ions as the substrate, PB was generated and embedded in the micromotor at the same time of crosslinking. The micromotors are more stable and could capture bacteria with the addition of CS. The micromotors show excellent performance, containing photothermal conversion, reactive oxygen species (ROS) generation and bubble produced by catalyzing Fenton reaction for motion, which served as therapeutic agent could chemically kill bacteria and physically destroy biofilm. This research work opens a new path of an innovative strategy to efficiently remove biofilm.


Assuntos
Quitosana , Alginatos , Biofilmes , Ferrocianetos
15.
Food Chem ; 415: 135752, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36881958

RESUMO

Blackberries provide multiple health benefits. However, they deteriorate easily during harvesting, storage, and transportation (temperature-changing). Therefore, to extend their shelf-life under variable temperature conditions, a temperature-sensitive nanofibre-based material with good preservation attributes was developed, composed of polylactic acid (PLA) electrospun fibres, loaded with lemon essential oil (LEO) and covered with poly (N-isopropylacrylamide) (PNIPAAm). Compared with PLA and PLA/LEO nanofibres, PLA/LEO/PNIPAAm exhibited good mechanical properties, oxidation resistance, antibacterial ability, and controlled release of LEO. The PNIPAAm layer prevented rapid LEO release below the low critical solution temperature (32 °C). When the temperature exceeded 32 °C, the PNIPAAm layer underwent a chain-to-globule transition and accelerated LEO release (slower than PLA/LEO). The temperature-controlled release of LEO via PLA/LEO/PNIPAAm membrane prolongs its action time. Therefore, PLA/LEO/PNIPAAm effectively maintained the appearance and nutritive quality of blackberries during variable storage temperatures. Our research demonstrated that active fibre membranes have great potential applications in preserving fresh products.


Assuntos
Nanofibras , Rubus , Preparações de Ação Retardada , Poliésteres , Temperatura
16.
Acc Chem Res ; 56(6): 631-643, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36892059

RESUMO

Delivering biological effector molecules in cultured cells is of fundamental importance to any study or application in which the modulation of gene expression is required. Examples range from generating engineered cell lines for studying gene function to the engineering of cells for cell-based therapies such as CAR-T cells and gene-corrected stem cells for regenerative medicine. It remains a great challenge, however, to deliver biological effector molecules across the cell membrane with minimal adverse effects on cell viability and functionality. While viral vectors have been frequently used to introduce foreign nucleic acids into cells, their use is associated with safety concerns such as immunogenicity, high manufacturing cost, and limited cargo capacity.For photoporation, depending on the laser energy, membrane permeabilization happens either by local heating or by laser-induced water vapor nanobubbles (VNB). In our first study on this topic, we demonstrated that the physical force exerted by suddenly formed VNB leads to more efficient intracellular delivery as compared to mere heating. Next, we explored the use of different photothermal nanomaterials, finding that graphene quantum dots display enhanced thermal stability compared to the more traditionally used gold nanoparticles, hence providing the possibility to increase the delivery efficiency by repeated laser activation. To enable its use for the production of engineered therapeutic cells, it would be better if contact with cells with nondegradable nanoparticles is avoided as it poses toxicity and regulatory concerns. Therefore, we recently demonstrated that photoporation can be performed with biodegradable polydopamine nanoparticles as well. Alternatively, we demonstrated that nanoparticle contact can be avoided by embedding the photothermal nanoparticles in a substrate made from biocompatible electrospun nanofibers. With this variety of photoporation approaches, over the years we demonstrated the successful delivery of a broad variety of biologics (mRNA, siRNA, Cas9 ribonucleoproteins, nanobodies, etc.) in many different cell types, including hard-to-transfect cells such as T cells, embryonic stem cells, neurons, and macrophages.In this Account, we will first start with a brief introduction of the general concept and a historical development of photoporation. In the next two sections, we will extensively discuss the various types of photothermal nanomaterials which have been used for photoporation. We discriminate two types of photothermal nanomaterials: single nanostructures and composite nanostructures. The first one includes examples such as gold nanoparticles, graphene quantum dots, and polydopamine nanoparticles. The second type includes polymeric films and nanofibers containing photothermal nanoparticles as well as composite nanoscale biolistic nanostructures. A thorough discussion will be given for each type of photothermal nanomaterial, from its synthesis and characterization to its application in photoporation, with its advantages and disadvantages. In the final section, we will provide an overall discussion and elaborate on future perspectives.


Assuntos
Grafite , Nanopartículas Metálicas , Nanoestruturas , Pontos Quânticos , Nanopartículas Metálicas/química , Ouro/química , Grafite/química
17.
Int J Biol Macromol ; 226: 14-36, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36436602

RESUMO

In recent decades, three-dimensional (3D) cell culture technologies have been developed rapidly in the field of tissue engineering and regeneration, and have shown unique advantages and great prospects in the differentiation of stem cells. Herein, the article reviews the progress and advantages of 3D cell culture technologies in the field of stem cell differentiation. Firstly, 3D cell culture technologies are divided into two main categories: scaffoldless and scaffolds. Secondly, the effects of hydrogels scaffolds and porous scaffolds on stem cell differentiation in the scaffold category were mainly reviewed. Among them, hydrogels scaffolds are divided into natural hydrogels and synthetic hydrogels. Natural materials include polysaccharides, proteins, and their derivatives, focusing on hyaluronic acid, collagen and polypeptides. Synthetic materials mainly include polyethylene glycol (PEG), polyacrylic acid (PAA), polyvinyl alcohol (PVA), etc. In addition, since the preparation techniques have a large impact on the properties of porous scaffolds, several techniques for preparing porous scaffolds based on different macromolecular materials are reviewed. Finally, the future prospects and challenges of 3D cell culture in the field of stem cell differentiation are reviewed. This review will provide a useful guideline for the selection of materials and techniques for 3D cell culture in stem cell differentiation.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Alicerces Teciduais/química , Ácido Hialurônico/farmacologia , Engenharia Tecidual/métodos , Diferenciação Celular , Colágeno/farmacologia , Hidrogéis/farmacologia , Hidrogéis/química , Técnicas de Cultura de Células em Três Dimensões , Peptídeos/farmacologia
19.
Macromol Rapid Commun ; 44(4): e2200706, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36353903

RESUMO

Herein novel multicompartment nanoparticles (MCNs) that combine high stability and cargo loading capacity are developed. The MCNs are fabricated by crystallization-driven self-assembly (CDSA) of a tailor-made 21 arm star polymer, poly(L-lactide)[poly(tert-butyl acrylate)-block-poly(ethylene glycol)]20 [PLLA(PtBA-b-PEG)20 ]. Platelet-like or spherical MCNs containing a crystalline PLLA core and hydrophobic PtBA subdomains are formed and stabilized by PEG. Hydrophobic cargos, such as Nile Red and chemotherapeutic drug doxorubicin, can be successfully encapsulated into the collapsed PtBA subdomains with loading capacity two orders of magnitude higher than traditional CDSA nanoparticles. Depolarized fluorescence measurements of the Nile Red loaded MCNs suggest that the free volume of the hydrophobic chains in the nanoparticles may be the key for regulating their drug loading capacity. In vitro study of the MCNs suggests excellent cytocompatibility of the blank nanoparticles as well as a dose-dependent cellular uptake and cytotoxicity of the drug-loaded MCNs.


Assuntos
Nanopartículas , Polímeros , Polímeros/química , Portadores de Fármacos/química , Cristalização , Polietilenoglicóis/química , Nanopartículas/química , Micelas
20.
Cell Biol Toxicol ; 39(1): 259-275, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34766255

RESUMO

Although the neurotoxicity of ZnO nanoparticles (NPs) has been evaluated in animal and nerve cell culture models, these models cannot accurately mimic human brains. Three-dimensional (3D) brain organoids based on human-induced pluripotent stem cells have been developed to study the human brains, but this model has rarely been used to evaluate NP neurotoxicity. We used 3D brain organoids that express cortical layer proteins to investigate the mechanisms of ZnO NP-induced neurotoxicity. Cytotoxicity caused by high levels of ZnO NPs (64 µg/mL) correlated with high intracellular Zn ion levels but not superoxide levels. Exposure to a non-cytotoxic concentration of ZnO NPs (16 µg/mL) increased the autophagy-marker proteins LC3B-II/I but decreased p62 accumulation, whereas a cytotoxic concentration of ZnO NPs (64 µg/mL) decreased LC3B-II/I proteins but did not affect p62 accumulation. Fluorescence micro-optical sectioning tomography revealed that 64 µg/mL ZnO NPs led to decreases in LC3B proteins that were more obvious at the outer layers of the organoids, which were directly exposed to the ZnO NPs. In addition to reducing LC3B proteins in the outer layers, ZnO NPs increased the number of micronuclei in the outer layers but not the inner layers (where LC3B proteins were still expressed). Adding the autophagy flux inhibitor bafilomycin A1 to ZnO NPs increased cytotoxicity and intracellular Zn ion levels, but adding the autophagy inducer rapamycin only slightly decreased cellular Zn ion levels. We conclude that high concentrations of ZnO NPs are cytotoxic to 3D brain organoids via defective autophagy and intracellular accumulation of Zn ions.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Animais , Humanos , Óxido de Zinco/toxicidade , Zinco , Autofagia , Encéfalo , Organoides/metabolismo , Nanopartículas Metálicas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...