Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731375

RESUMO

Global warming has a significant impact on the dairy farming industry, as heat stress causes reproductive endocrine imbalances and leads to substantial economic losses, particularly in tropical-subtropical regions. The Holstein breed, which is widely used for dairy production, is highly susceptible to heat stress, resulting in a dramatic reduction in milk production during hot seasons. However, previous studies have shown that cells of cows produced from reconstructed embryos containing cytoplasm (o) from Taiwan yellow cattle (Y) have improved thermotolerance despite their nuclei (n) being derived from heat-sensitive Holstein cattle (H). Using spindle transfer (ST) technology, we successfully produced ST-Yo-Hn cattle and proved that the thermotolerance of their ear fibroblasts is similar to that of Y and significantly better than that of H (p < 0.05). Despite these findings, the genes and molecules responsible for the different sensitivities of cells derived from ST-Yo-Hn and H cattle have not been extensively investigated. In the present study, ear fibroblasts from ST-Yo-Hn and H cattle were isolated, and differentially expressed protein and gene profiles were compared with or without heat stress (hs) (42 °C for 12 h). The results revealed that the relative protein expression levels of pro-apoptotic factors, including Caspase-3, -8, and -9, in the ear fibroblasts from the ST-Yo-Hn-hs group were significantly lower (p < 0.05) than those from the H-hs group. Conversely, the relative expression levels of anti-apoptotic factors, including GNA14 protein and the CRELD2 and PRKCQ genes, were significantly higher (p < 0.05) in the ear fibroblasts from the ST-Yo-Hn-hs group compared to those from the H-hs group. Analysis of oxidative phosphorylation-related factors revealed that the relative expression levels of the GPX1 gene and Complex-I, Complex-IV, CAT, and PGLS proteins were significantly higher (p < 0.05) in the ear fibroblasts from the ST-Yo-Hn-hs group compared to those from the H-hs group. Taken together, these findings suggest that ear fibroblasts from ST-Yo-Hn cattle have superior thermotolerance compared to those from H cattle due to their lower expression of pro-apoptotic factors and higher expression of oxidative phosphorylation and antioxidant factors. Moreover, this improved thermotolerance is attributed, at least partially, to the cytoplasm derived from more heat-tolerant Y cattle. Hence, using ST technology to produce more heat-tolerant H cattle containing Y cytoplasm could be a feasible approach to alleviate the negative impacts of heat stress on dairy cattle in tropical-subtropical regions.

2.
Nanomaterials (Basel) ; 13(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37630901

RESUMO

The rapid development of industry has emphasized the importance of phase change materials (PCMs) with a high latent-heat storage capacity and good thermal stability in promoting sustainable energy solutions. However, the inherent low thermal conductivity and poor thermal-cycling stability of PCMs limit their application. In this study, we constructed three-dimensional (3D) hybrid graphene aerogels (GBA) based on synergistic assembly and cross-linking between GO and modified hexagonal boron nitride (h-BN). Highly thermally conductive GBA was utilized as the supporting optimal matrix for encapsulating OD, and further implied that composite matrix n-octadecane (OD)/GBA composite PCMs were further prepared by encapsulating OD within the GBA structure. Due to the highly thermally conductive network of GBA, the latent heat of the composite PCMs improved to 208.3 J/g, with negligible changes after 100 thermal cycles. In addition, the thermal conductivity of the composite PCMs was significantly enhanced to 1.444 W/(m·k), increasing by 738% compared to OD. These results sufficiently confirmed that the novel GBA with a well-defined porous structure served as PCMs with excellent comprehensive performance offer great potential for thermal energy storage applications.

3.
Membranes (Basel) ; 13(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37103828

RESUMO

A superhydrophobic (SH) surface is typically constructed by combining a low-surface-energy substance and a high-roughness microstructure. Although these surfaces have attracted considerable attention for their potential applications in oil/water separation, self-cleaning, and anti-icing devices, fabricating an environmentally friendly superhydrophobic surface that is durable, highly transparent, and mechanically robust is still challenging. Herein, we report a facile painting method to fabricate a new micro/nanostructure containing ethylenediaminetetraacetic acid/poly(dimethylsiloxane)/fluorinated SiO2 (EDTA/PDMS/F-SiO2) coatings on the surface of a textile with two different sizes of SiO2 particles, which have high transmittance (>90%) and mechanical robustness. The different-sized SiO2 particles were employed to construct the rough micro/nanostructure, fluorinated alkyl silanes were employed as low-surface-energy materials, PDMS was used for its heat-durability and wear resistance, and ETDA was used to strengthen the adhesion between the coating and textile. The obtained surfaces showed excellent water repellency, with a water contact angle (WCA) greater than 175° and a sliding angle (SA) of 4°. Furthermore, the coating retained excellent durability and remarkable superhydrophobicity for oil/water separation, abrasion resistance, ultraviolet (UV) light irradiation stability, chemical stability, self-cleaning, and antifouling under various harsh environments.

4.
Mater Today Bio ; 16: 100403, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36090608

RESUMO

A multicomponent vapour-deposited porous (MVP) coating with combined physical and biochemical properties was fabricated based on a chemical vapour sublimation and deposition process. Multiple components are used based on their natural thermodynamic properties, being volatile and/or nonvolatile, resulting in the sublimation of water vapour (from an iced template), and a simultaneous deposition process of poly-p-xylylene occurs upon radical polymerization into a disordered structure, forming porous coatings of MVP on various substrates. In terms of physical properties, the coating technology exhibits adjustable hydrophobicity by tuning the surface morphology by timed control of the sublimation of the iced template layer from a substrate. However, by using a nonvolatile solution during fabrication, an impregnation process of the deposited poly-p-xylylene on such a solution with tuning contact angles produces an MVP coating with a customizable elastic modulus based on deformation-elasticity theory. Moreover, patterning physical structures with adjustable pore size and/or porosity of the coatings, as well as modulation and compartmentalization to introduce necessary boundaries of microstructures within one MVP coating layer, can be achieved during the proposed fabrication process. Finally, with a combination of defined solutions comprised of both volatile and nonvolatile multicomponents, including functional biomolecules, growth factor proteins, and living cells, the fabrication of the resultant MVP coating serves devised purposes exhibiting a variety of biological functions demonstrated with versatility for cell proliferation, osteogenesis, adipogenesis, odontogenesis, spheroid growth of stem cells, and a complex coculture system towards angiogenesis. Multicomponent porous coating technology is produced based on vapour sublimation and deposition upon radical polymerization that overturns conventional vapour-deposited coatings, resulting in only dense thin films, and in addition, the versatility of adjusting coating physical and chemical properties by exploiting the volatility mechanism of iced solution templates and accommodation of solute substances during the fabrication process. The MVP coating and the proposed fabrication technique represent a simple approach to provide a prospective interface coating layer for materials science and are attractive for unlimited applications.

5.
Beilstein J Nanotechnol ; 13: 882-895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36127897

RESUMO

LaFe x Ni1- x O3 perovskite oxides were prepared by the sol-gel method under various conditions, including different pH values (pH 0 and pH 7) and different calcination temperatures (500-800 °C) as well as different Fe/Ni ratios (1/9, 3/7, 5/5, 7/3, 9/1). The samples were examined by XRD, DRS, BET, and SEM to reveal their crystallinity, light-absorption ability, specific surface area, and surface features, respectively. The photocatalytic Fenton reaction was conducted using various LaFe x Ni1- x O3 perovskite oxides to decompose the methylene blue molecules. Accordingly, the synthesis condition of pH 0, calcination temperature at 700 °C, and Fe/Ni ratio = 7/3 could form LaFe0.7Ni0.3O3 perovskite oxides as highly efficient photocatalysts. Moreover, various conditions during the photocatalytic degradation were verified, such as pH value, catalyst dosage, and the additional amount of H2O2. LaFe0.7Ni0.3O3 perovskite oxides could operate efficiently under pH 3.5, catalyst dosage of 50 mg/150 mL, and H2O2 concentration of 133 ppm to decompose the MB dye in the 1st order kinetic rate constant of 0.0506 s-1.

6.
Front Vet Sci ; 9: 869217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615247

RESUMO

Fallopian tube is essential to fertilization and embryonic development. Extracellular vesicles (EVs) from Fallopian tube containing biological regulatory factors, such as lipids, proteins and microRNAs (miRNAs) serve as the key role. At present, studies on oocytes from porcine oviduct and components from EVs remain limited. We aim to explore the effect of EVs secreted by porcine fallopian tube stem cells (PFTSCs) on oocyte. When the fifth-generation PFTSCs reached 80-90% of confluency, the pig in vitro maturation medium was utilized, and the conditioned medium collected for oocyte incubations. To realize the functions of EVs, several proteins were used to determine whether extracted EVs were cell-free. Field emission scanning electron microscope and nanoparticle tracking analyzer were used to observe the morphology. By next generation sequencing, 267 miRNAs were identified, and those with higher expression were selected to analyze the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment maps. The selected miR-152-3p, miR-148a-3p, miR-320a-3p, let-7f-5p, and miR-22-3p, were predicted to target Cepb1 gene affecting MAPK pathway. Of the five miRNAs, miR-320a-3p showed significant difference in maturation rate in vitro maturation. The blastocyst rate of pig embryos was also significantly enhanced by adding 50 nM miR-320a-3p. In vitro culture with miR-320a-3p, the blastocyst rate was significantly higher, but the cleavage rate and cell numbers were not. The CM of PFTSCs effectively improves porcine oocyte development. The miRNAs in EVs are sequenced and identified. miR-320a-3p not only helps the maturation, but also increases the blastocyst rates.

7.
Chemosphere ; 288(Pt 1): 132427, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34600922

RESUMO

As UV-light stabilizers, Bis(4-hydroxy)benzophenone (BBP), are extensively consumed to quench radicals from photooxidation, continuous release of BPs into the environment poses serious threats to the ecology in view of their xenohormone toxicities, and BBP shall be eliminated from water to avoid its adverse effect. Since sulfate radical (SR)-based chemical oxidation techniques have been proven as effective procedures for eliminating organic emerging contaminants, this study aims to develop useful SR-based procedures through activating Oxone for degrading BBP in water. In contrast to the conventional Co3O4, cobalt sulfide (CoS) is particularly proposed as an alternative heterogeneous catalyst for activating Oxone to degrade BBP because CoS exhibits more reactive redox characteristics. As structures of catalysts predominantly control their catalytic activities, in this study, a unique nanoplate-assembled CoS (NPCS) 3D cluster is fabricated via a convenient one-step process to serve as a promising heterogeneous catalyst for activating Oxone to degrade BBP. With NPCS = 100 mg/L and Oxone = 200 mg/L, 5 mg/L of BBP can be completely eliminated in 60 min. The catalytic activity of NPCS towards Oxone activation also significantly surpasses the reference material, Co3O4, to enhance degradation of BBP. Ea of BBP degradation by NPCS-activated Oxone is also determined as a relatively low value of 42.7 kJ/mol. The activation mechanism as well as degradation pathway of BBP degradation by NPCS-activated Oxone was investigated and validated through experimental evidences and density functional theory (DFT) calculation to offer valuable insights into degradation behaviors for developing SR-based processes of BBP degradation using CoS catalysts.


Assuntos
Poluentes Químicos da Água , Benzofenonas , Catálise , Cobalto , Óxidos , Ácidos Sulfúricos , Poluentes Químicos da Água/análise
8.
Genes (Basel) ; 12(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34573362

RESUMO

Enhancing resistance and tolerance to pathogens remains an important selection objective in the production of livestock animals. Single nucleotide polymorphisms (SNPs) vary gene expression at the transcriptional level, influencing an individual's immune regulation and susceptibility to diseases. In this study, we investigated the distribution of SNP sites in immune-related genes and their correlations with cell surface markers of immune cells within purebred (Taiwan black, Duroc, Landrace and Yorkshire) and crossbred (Landrace-Yorkshire) pigs. Thirty-nine SNPs of immune-related genes, including 11 cytokines, 5 chemokines and 23 Toll-like receptors (TLRs) (interferon-α and γ (IFN-α, γ), tumor necrosis factor-α (TNF-α), granulocyte-macrophage colony-stimulating factor (GM-CSF), Monocyte chemoattractant protein-1 (MCP-1) and TLR3, TLR4, TLR7, TLR8, and TLR9) were selected, and the percentages of positive cells with five cell surface markers of CD4, CD8, CD80/86, MHCI, and MHCII were analyzed. There were 28 SNPs that were significantly different among breeds, particularly between Landrace and Taiwan black. For instance, the frequency of SNP1 IFN-α -235A/G in Taiwan black and Landrace was 11.11% and 96.15%, respectively. In addition, 18 SNPs significantly correlated with the expression of cell surface markers, including CD4, CD8, CD80/86, and MHCII. The percentage of CD4+ (39.27%) in SNP33 TLR-8 543C/C was significantly higher than those in A/C (24.34%), at p < 0.05. Together, our findings show that Taiwan black pigs had a unique genotype distribution, whereas Landrace and Yorkshire had a more similar genotype distribution. Thus, an understanding of the genetic uniqueness of each breed could help to identify functionally important SNPs in immunoregulation.


Assuntos
Resistência à Doença/genética , Predisposição Genética para Doença , Sus scrofa/genética , Animais , Biomarcadores , Imunofenotipagem , Polimorfismo de Nucleotídeo Único , Seleção Artificial , Sus scrofa/sangue , Sus scrofa/imunologia
9.
Nutrients ; 13(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34371822

RESUMO

Tetranectin (TN), a plasminogen-binding protein originally involved in fibrinolysis and bone formation, was later identified as a secreted adipokine from human and rat adipocytes and positively correlated with adipogenesis and lipid metabolism in adipocytes. To elucidate the nutritional regulation of adipogenic TN from diets containing different sources of fatty acids (saturated, n-6, n-3) in adipocytes, we cloned the coding region of porcine TN from a cDNA library and analyzed tissue expressions in weaned piglets fed with 2% soybean oil (SB, enriched in n-6 fatty acids), docosahexaenoic acid oil (DHA, an n-3 fatty acid) or beef tallow (BT, enriched in saturated and n-9 fatty acids) for 30 d. Compared with tissues in the BT- or SB-fed group, expression of TN was reduced in the adipose, liver and lung tissues from the DHA-fed group, accompanied with lowered plasma levels of triglycerides and cholesterols. This in vivo reduction was also confirmed in porcine primary differentiated adipocytes supplemented with DHA in vitro. Then, promoter analysis was performed. A 1956-bp putative porcine TN promoter was cloned and transcription binding sites for sterol regulatory-element binding protein (SREBP)-1c or forkhead box O proteins (FoxO) were predicted on the TN promoter. Mutating binding sites on porcine TN promoters showed that transcriptional suppression of TN by DHA on promoter activity was dependent on specific response elements for SREBP-1c or FoxO. The inhibited luciferase promoter activity by DHA on the TN promoter coincides with reduced gene expression of TN, SREBP-1c, and FoxO1 in human embryonic kidney HEK293T cells supplemented with DHA. To conclude, our current study demonstrated that the adipogenic TN was negatively regulated by nutritional modulation of DHA both in pigs in vivo and in humans/pigs in vitro. The transcriptional suppression by DHA on TN expression was partly through SREBP-1c or FoxO. Therefore, down-regulation of adipogenic tetranectin associated with fibrinolysis and adipogenesis may contribute to the beneficial effects of DHA on ameliorating obesity-induced metabolic syndromes such as atherosclerosis and adipose dysfunctions.


Assuntos
Adipogenia/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Lectinas Tipo C/efeitos dos fármacos , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Adipócitos/efeitos dos fármacos , Animais , Fibrinólise/efeitos dos fármacos , Células HEK293 , Humanos , Fenômenos Fisiológicos da Nutrição/genética , Suínos
10.
Nat Commun ; 12(1): 3413, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099701

RESUMO

Bottom-up approaches using building blocks of modules to fabricate scaffolds for tissue engineering applications have enabled the fabrication of structurally complex and multifunctional materials allowing for physical and chemical flexibility to better mimic the native extracellular matrix. Here we report a vapor-phased fabrication process for constructing three-dimensional modulated scaffold materials via simple steps based on controlling mass transport of vapor sublimation and deposition. We demonstrate the fabrication of scaffolds comprised of multiple biomolecules and living cells with built-in boundaries separating the distinct compartments containing defined biological configurations and functions. We show that the fabricated scaffolds have mass production potential. We demonstrate overall >80% cell viability of encapsulated cells and that modulated scaffolds exhibit enhanced cell proliferation, osteogenesis, and neurogenesis, which can be assembled into various geometric configurations. We perform cell co-culture experiments to show independent osteogenesis and angiogenesis activities from separate compartments in one scaffold construct.


Assuntos
Materiais Biomiméticos/química , Vapor , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Técnicas de Cultura de Células , Linhagem Celular , Proliferação de Células , Técnicas de Cocultura , Matriz Extracelular , Humanos , Hidrogéis/química , Camundongos , Neovascularização Fisiológica , Neurogênese , Osteogênese , Ratos
11.
Polymers (Basel) ; 13(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806497

RESUMO

Conventional porous materials are mostly synthesized in solution-based methods involving solvents and initiators, and the functionalization of these porous materials usually requires additional and complex steps. In the current study, a methyl propiolate-functionalized porous poly-p-xylylene material was fabricated based on a unique vapor sublimation and deposition process. The process used a water solution and ice as the template with a customizable shape and dimensions, and the conventional chemical vapor deposition (CVD) polymerization of poly-p-xylylene on such an ice template formed a three-dimensional, porous poly-p-xylylene material with interconnected porous structures. More importantly, the functionality of methyl propiolate was well preserved by using methyl propiolate-substituted [2,2]-paracyclophane during the vapor deposition polymerization process and was installed in one step on the final porous poly-p-xylylene products. This functionality exhibited an intact structure and reactivity during the proposed vapor sublimation and deposition process and was proven to have no decomposition or side products after further characterization and conjugation experiments. The electron-withdrawing methyl propiolate group readily provided efficient alkynes as click azide-terminated molecules under copper-free and mild conditions at room temperature and in environmentally friendly solvents, such as water. The resulting methyl propiolate-functionalized porous poly-p-xylylene exhibited interface properties with clickable specific covalent attachment toward azide-terminated target molecules, which are widely available for drugs and biomolecules. The fabricated functional porous materials represent an advanced material featuring porous structures, a straightforward synthetic approach, and precise and controlled interface click chemistry, rendering long-term stability and efficacy to conjugate target functionalities that are expected to attract a variety of new applications.

12.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477525

RESUMO

Adult humans and mice possess significant classical brown adipose tissues (BAT) and, upon cold-induction, acquire brown-like adipocytes in certain depots of white adipose tissues (WAT), known as beige adipose tissues or WAT browning/beiging. Activating thermogenic classical BAT or WAT beiging to generate heat limits diet-induced obesity or type-2 diabetes in mice. Adiponectin is a beneficial adipokine resisting diabetes, and causing "healthy obese" by increasing WAT expansion to limit lipotoxicity in other metabolic tissues during high-fat feeding. However, the role of its receptors, especially adiponectin receptor 1 (AdipoR1), on cold-induced thermogenesis in vivo in BAT and in WAT beiging is still elusive. Here, we established a cold-induction procedure in transgenic mice over-expressing AdipoR1 and applied a live 3-D [18F] fluorodeoxyglucose-PET/CT (18F-FDG PET/CT) scanning to measure BAT activity by determining glucose uptake in cold-acclimated transgenic mice. Results showed that cold-acclimated mice over-expressing AdipoR1 had diminished cold-induced glucose uptake, enlarged adipocyte size in BAT and in browned WAT, and reduced surface BAT/body temperature in vivo. Furthermore, decreased gene expression, related to thermogenic Ucp1, BAT-specific markers, BAT-enriched mitochondrial markers, lipolysis and fatty acid oxidation, and increased expression of whitening genes in BAT or in browned subcutaneous inguinal WAT of AdipoR1 mice are congruent with results of PET/CT scanning and surface body temperature in vivo. Moreover, differentiated brown-like beige adipocytes isolated from pre-adipocytes in subcutaneous WAT of transgenic AdipoR1 mice also had similar effects of lowered expression of thermogenic Ucp1, BAT selective markers, and BAT mitochondrial markers. Therefore, this study combines in vitro and in vivo results with live 3-D scanning and reveals one of the many facets of the adiponectin receptors in regulating energy homeostasis, especially in the involvement of cold-induced thermogenesis.


Assuntos
Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Receptores de Adiponectina/genética , Termogênese/genética , Proteína Desacopladora 1/genética , Adipócitos Bege/metabolismo , Tecido Adiposo Bege/diagnóstico por imagem , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Branco/diagnóstico por imagem , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo Energético/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Transgênicos/genética , Camundongos Transgênicos/metabolismo , Mitocôndrias/genética , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Tomografia por Emissão de Pósitrons
13.
J Colloid Interface Sci ; 584: 749-759, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33176929

RESUMO

As sulfosalicylic acid (SUA) is extensively used as a pharmaceutical product, discharge of SUA into the environment becomes an emerging environmental issue because of its low bio-degradability. Thus, SO4--based advanced oxidation processes have been proposed for degrading SUA because of many advantages of SO4-. As Oxone represents a dominant reagent for producing SO4-, and Co is the most capable metal for activating Oxone to generate SO4-, it is critical to develop an effective but easy-to-use Co-based catalysts for Oxone activation to degrade SUA. Herein, a 3D hierarchical catalyst is specially created by decorating Co3O4 nanocubes (NCs) on macroscale nitrogen-doped carbon form (NCF). This Co3O4-decorated NCF (CONCF) is free-standing, macroscale and even squeezable to exhibit interesting and versatile features. More importantly, CONCF consists of Co3O4 NCs evenly distributed on NCF without aggregation. The NCF not only serves as a support for Co3O4 NCs but also offers additional active sites to synergistically enhance catalytic activities towards Oxone activation. Therefore, CONCF exhibits a higher catalytic activity than the conventional Co3O4 nanoparticles for activating Oxone to fully eliminate SUA in 30 min with a rate constant of 0.142 min-1. CONCF exhibits a much lower Ea value of SUA degradation (35.2 kJ/mol) than reported values, and stable catalytic activities over multi-cyclic degradation of SUA. The mechanism of SUA degradation is also explored, and degradation intermediates of SUA degradation are identified to provide a possible pathway of SUA degradation. These features validate that CONCF is certainly a promising 3D hierarchical catalyst for enhanced Oxone activation to degrade SUA. The findings obtained here are also insightful to develop efficient heterogeneous Oxone-activating catalysts for eliminating emerging contaminants.

14.
Polymers (Basel) ; 13(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374286

RESUMO

A regulatable bioremediation capsule material was synthesized with isolated single-strain bacteria (Bacillus species, B. CMC1) and a regulator molecule (carboxymethyl cellulose, CMC) by a vapor-phased encapsulation method with simple steps of water sublimation and poly-p-xylylene deposition in chemical vapor deposition (CVD) process. Mechanically, the capsule construct exhibited a controllable shape and dimensions, and was composed of highly biocompatible poly-p-xylylene as the matrix with homogeneously distributed bacteria and CMC molecules. Versatility of the encapsulation of the molecules at the desired concentrations was achieved in the vapor-phased sublimation and deposition fabrication process. The discovery of the fabricated capsule revealed that viable living B. CMC1 inhabited the capsule, and the capsule enhanced bacterial growth due to the materials and process used. Biologically, the encapsulated B. CMC1 demonstrated viable and functional enzyme activity for cellulase activation, and such activity was regulatable and proportional to the concentration of the decorated CMC molecules in the same capsule construct. Impressively, 13% of cellulase activity increase was realized by encapsulation of B. CMC1 by poly-p-xylylene, and a further 34% of cellulase activity increase was achieved by encapsulation of additional 2.5% CMC. Accordingly, this synergistic effectiveness of the capsule constructs was established by combining enzymatic B. CMC1 bacteria and its regulatory CMC by poly-p-xylylene encapsulation process. This reported encapsulation process exhibited other advantages, including the use of simple steps and a dry and clean process free of harmful chemicals; most importantly, the process is scalable for mass production. The present study represents a novel method to fabricate bacteria-encapsulated capsule for cellulose degradation in bioremediation that can be used in various applications, such as wastewater treatment and transforming of cellulose into glucose for biofuel production. Moreover, the concept of this vapor-phased encapsulation technology can be correspondingly used to encapsulate multiple bacteria and regulators to enhance the specific enzyme functions for degradation of various organic matters.

15.
Analyst ; 145(15): 5226-5231, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32597917

RESUMO

The current clinical protocol to conduct a bacterial antibiotic susceptibility test (AST) requires at least 18 hours, and cannot be accomplished during a single visit for patients. Here, a new method based on the technique of CRISPR-Cas12a is utilized to accomplish a bacterial genotypic AST within one hour with good accuracy. Two amplification approaches are employed and compared: (1) enriching the bacterial concentration by culturing in growth media; and (2) amplifying target DNA from raw samples by recombinase polymerase amplification (RPA). The results show that CRISPR combined with RPA can rapidly and accurately provide a bacterial genotypic AST of urine samples with urinary tract infections for precise antibiotic treatment. As such, this technology could open a new class of rapid bacterial genotypic AST for various infectious diseases.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Infecções Urinárias , Antibacterianos/farmacologia , Bactérias/genética , Sistemas CRISPR-Cas/genética , Humanos , Infecções Urinárias/diagnóstico , Infecções Urinárias/tratamento farmacológico
16.
ACS Appl Mater Interfaces ; 12(20): 23217-23224, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326698

RESUMO

We report the resistive electrical memory characteristics controlled by the self-assembled nanostructures of maltoheptaose-block-polystyrene (MH-b-PS) block copolymers, where the MH and PS blocks provide the charge-trapping and the insulating tunneling layer, respectively. A simple solvent annealing process, with various annealing conditions, were introduced for MH-b-PS thin films to achieve disordered, orientated cylinders and ordered-packed spheres morphologies. More details about the self-assembled MH-b-PS nanostructures, coupled with different volume fractions between MH and PS blocks, were investigated using atomic force microscopy and grazing-incidence small-angle X-ray scattering analyses. Moreover, various electrical memory behaviors including nonvolatile write-once-read-many-times (WORM) and Flash, and volatile dynamic-random-access-memory (DRAM) could be obtained by the same material (MH-b-PS3k). This study establishes a detailed relationship between the nanostructure of the MH-b-PS-based block copolymers and their memory behavior of the resistive memory devices.

17.
ACS Macro Lett ; 9(9): 1237-1248, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35638625

RESUMO

Synthetic polymeric materials with adaptive capabilities triggered by mechanical stimuli could significantly extend their life cycle and boost performance. To achieve this, robust mechanically responsive chemistries must be developed. Piezoelectrically mediated chemistry is an emergent area of interest for this purpose since environmental mechanical energy can be harvested and directly converted to chemical energy. This Viewpoint summarizes state-of-the-art knowledge about mechanochemical reactions mediated by the piezoelectrochemical effect, provides mechanistic insight on reactivity, and describes its application for conducting polymerization and cross-linking reactions. In addition, it highlights current challenges with regard to expanding the chemical repertoire and the transition of such methods to solid matrices.

18.
ACS Appl Bio Mater ; 3(10): 7193-7201, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-35019377

RESUMO

A scaffold was fabricated to synergistically encapsulate living human adipose-derived stem cells (hASCs) and platelet-rich plasma (PRP) based on a vapor-phase sublimation and deposition process. During the process, ice templates were prepared using sterile water as the solvent and were used to accommodate the sensitive living cells and PRP molecules. Under controlled processing conditions, the ice templates underwent vapor sublimation to evaporate water molecules, while at the same time, vapor-phase deposition of poly-p-xylylene (Parylene, USP Class VI highly biocompatible) occurred to replace the templates, and the final construction yielded a scaffold with Parylene as the matrix, with simultaneously encapsulated living hASCs and PRP molecules. Evaluation of the fabricated synergistic scaffold for the proliferation activities toward the encapsulated hASCs indicated significant augmentation of cell proliferation contributed by the PRP ingredients. In addition, osteogenic activity in the early stage by alkaline phosphatase expression and later stage with calcium mineralization indicated significant enhancement toward osteogenetic differentiation of the encapsulated hASCs, which were guided by the PRP molecules. By contrast, examinations of adipogenic activity by lipid droplet formation revealed an inhibition of adipogenesis with decreased intracellular lipid accumulation, and a statistically significant downregulation of adipogenic differentiation was postulated for the scaffold products when compared to the osteogenetic results and the control experiments. The reported fabrication method featured a clean and simple process to construct scaffolds that combined delicate living hASCs and PRP molecules inside the structure. The resultant synergistic scaffold and the selected commercially available hASCs and PRP are emerging as tissue engineering tools that provide multifunctionality for tissue repair and regeneration.

19.
Thromb Haemost ; 118(1): 90-102, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29304529

RESUMO

Without conjunctive administration of an anticoagulant, endothelial injury-induced thrombosis is resistant to thrombolysis and prone to re-thrombosis. We hypothesized that co-delivery of recombinant tissue plasminogen activator (rtPA) with annexin V-containing anticoagulants that specifically target the injured endothelium may passivate the thrombogenic elements of the vascular injury site and enhance rtPA-induced thrombolysis. In this study, the effects of conjunctive administration of Kinexins (Kunitz inhibitor-annexin V fusion proteins) with rtPA on thrombolysis were determined in vitro and in vivo. Thromboelastometry showed that both TAP-A (tick anticoagulant peptide-annexin V fusion protein; an inhibitor of factor Xa [FXa] and prothrombinase) and A-6L15 (annexin V-6L15 fusion protein; an inhibitor of tissue factor/FVIIa) exerted concentration-dependent (10-100 nM) effects on clot formation, with TAP-A being several folds more potent than A-6L15 in whole blood. Combination of TAP-A or A-6L15 with rtPA (1 µg/mL) led to decrease in lysis index, suggesting conjunctive enhancement of thrombolysis by combined use of rtPA with TAP-A or A-6L15. In a rat cremaster muscle preparation subjected to photochemical injury, conjunctive administration of rtPA and TAP-A significantly restored tissue perfusion to 56%, which is approximately two fold of that by rtPA or TAP-A alone. Near-infrared fluorescence images demonstrated local retention of a fluorescent A-6L15-S288 at the injury site, suggesting a targeting effect of the fusion protein. Pharmacokinetic analysis showed that 123I-labelled TAP-A and A-6L15 had initial distribution half-lives (T1/2α) of approximately 6 minutes and elimination half-lives (T1/2ß) of approximately 2.3 hours. In conclusion, Kinexins were potentially useful adjunctive agents with rtPA thrombolytic therapy especially for thrombosis induced by endothelial injury.


Assuntos
Músculos Abdominais/fisiopatologia , Anexina A5/química , Endotélio/lesões , Tromboelastografia , Terapia Trombolítica , Inibidor da Tripsina de Soja de Kunitz/química , Animais , Anexina A5/uso terapêutico , Anticoagulantes/química , Coagulação Sanguínea/efeitos dos fármacos , Endotélio/patologia , Fator VIIa/química , Fator Xa/química , Humanos , Radioisótopos do Iodo/química , Masculino , Peptídeos/química , Perfusão , Inibidores de Proteases/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Fluorescência , Espectroscopia de Luz Próxima ao Infravermelho , Trombose/fisiopatologia , Inibidor da Tripsina de Soja de Kunitz/uso terapêutico
20.
Lipids Health Dis ; 16(1): 33, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28173868

RESUMO

BACKGROUND: Changing dietary fatty acid composition in modern diet influences the prevalence of obesity. Increasing evidences suggest favorable effects of n-3 PUFA for protecting against obesity and the metabolic syndrome. However, the regulation of n-3 PUFA in adipose is still unclear. Thus, this study addressed metabolism of different dietary fats in the adipose tissue of porcine model. METHODS: Eight-week-old cross-bred pigs were randomly assigned to three groups and fed a 2% fat diet for 30 days from either soybean oil (SBO), docosahexaenoic acid (DHA) or beef tallow. An in vitro experiment was conducted in which linoleic acid (LA), DHA or oleic acid (OA) were added to represent the major fatty acid in the SBO-, DHA- or BT- diets, respectively. Adipocytes size and lipid metabolism related genes were analyzed. RESULTS: Plasma triacylglycerol (TAG) was lower in DHA- than in BT-fed pigs, and the product of lipolysis, glycerol was highest in BT-fed pigs. In addition, expression of the lipolytic genes, adipose triglyceride lipase and hormone sensitive lipase was higher in BT-fed pigs and with OA treatment in vitro. DHA promoted protein kinase A activity in pigs without affecting lipolytic genes. Adipocyte cell sizes, TAG content and expression of lipogenic-related genes including, adipose differentiated related protein (ADRP) and diacylglycerol acyltransferase 1 (DGAT1) were elevated by DHA in vivo and in vitro, indicating DHA promoted adipogenesis to trap TAG in adipose tissue. Fatty acid ß-oxidation genes were increased in the DHA-fed pigs. CONCLUSION: This effect was partly explained by the effect of DHA to promote adipogenesis to trap TAG in adipocytes and also increase expression of genes involved in adipocyte fatty acid oxidation. Therefore, our results suggest a direct effect of DHA on adipocyte metabolism, resulting in TAG turnover and fatty acid dissipation to facilitate plasma lipid uptake from the circulation.


Assuntos
Adipócitos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Lipogênese/genética , Proteínas/genética , Triglicerídeos/metabolismo , Adipócitos/fisiologia , Adipogenia , Animais , Dieta , Ácidos Docosa-Hexaenoicos/metabolismo , Feminino , Masculino , Modelos Animais , Obesidade/metabolismo , Obesidade/fisiopatologia , Suínos/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...